Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2006_3_a40, author = {Andrei V. Tetenov}, title = {On the rigidity of one-dimensional systems of contraction similitudes}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {342--345}, publisher = {mathdoc}, volume = {3}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a40/} }
Andrei V. Tetenov. On the rigidity of one-dimensional systems of contraction similitudes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 342-345. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a40/
[1] Bandt Ch., Graf S., “Self-similar sets 7. A characterization of self-similar fractals with positive Hausdorff measure”, Proc. Amer. Math. Soc., 114:4 (1992), 995–1001 | MR | Zbl
[2] Das M., Edgar G. A., Separation properties for graph-directed self-similar fractals, Preprint, 2003 | MR
[3] Lau K.-S., Ngai S.-M., “Multifractal measures and weak separation condition”, Adv. Math., 141 (1999), 45–96 | DOI | MR | Zbl
[4] Hutchinson J., “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl
[5] Zerner M., “Weak separation properties for self-similar sets”, Proc. Amer. Math. Soc., 124 (1996), 3529–3539 | DOI | MR | Zbl