On $p$-groups with generally finite element
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 89-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study groups with generally finite element.
@article{SEMR_2006_3_a35,
     author = {A. M. Popov},
     title = {On $p$-groups with generally finite element},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {89--91},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a35/}
}
TY  - JOUR
AU  - A. M. Popov
TI  - On $p$-groups with generally finite element
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 89
EP  - 91
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a35/
LA  - ru
ID  - SEMR_2006_3_a35
ER  - 
%0 Journal Article
%A A. M. Popov
%T On $p$-groups with generally finite element
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 89-91
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a35/
%G ru
%F SEMR_2006_3_a35
A. M. Popov. On $p$-groups with generally finite element. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 89-91. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a35/

[1] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, 3-e izd., Nauka, M., 1982 | MR

[2] Kurosh A. G., Teoriya grupp, 3-e izd., Nauka, M., 1967 | MR | Zbl

[3] Merzlyakov Yu. I., “Matrichnoe predstavlenie grupp vneshnikh avtomorfizmov chernikovskikh grupp”, Algebra i logika, 8:4 (1969), 478–482

[4] Merzlyakov Yu. I., Ratsionalnye gruppy, Nauka, M., 1980 | MR

[5] Blackburn N., “Some remarks on Cernikov $p$-groups. III”, J. Math., 6 (1962), 421–431 | MR

[6] Popov A. M., “O $p$-gruppakh s chernikovskim tsentralizatorom needinichnogo”, Algebra i logika, 40:3 (2001), 330–343 | MR | Zbl