Uniqueness of the embedding of a~$2$-complex into a~$3$-manifold
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 83-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SEMR_2006_3_a33,
     author = {J. Glock},
     title = {Uniqueness of the embedding of a~$2$-complex into a~$3$-manifold},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {83--85},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a33/}
}
TY  - JOUR
AU  - J. Glock
TI  - Uniqueness of the embedding of a~$2$-complex into a~$3$-manifold
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 83
EP  - 85
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a33/
LA  - en
ID  - SEMR_2006_3_a33
ER  - 
%0 Journal Article
%A J. Glock
%T Uniqueness of the embedding of a~$2$-complex into a~$3$-manifold
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 83-85
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a33/
%G en
%F SEMR_2006_3_a33
J. Glock. Uniqueness of the embedding of a~$2$-complex into a~$3$-manifold. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 83-85. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a33/

[1] B. G. Casler, “An embedding theorem for connected 3-manifolds with boundary”, Proc. Amer. Math. Soc., 16 (1965), 559–566 | MR

[2] C. I. Hog-Angeloni, Detecting 3-Manifold Presentations, Lond. Math. Soc. LNS, 275, Cambridge University Press, 2000 | MR | Zbl

[3] C. I. Hog-Angeloni, J. Glock, “Embeddings of 2-complexes into 3-manifolds”, Journal of Knot Theory and Its Ramifications, 14:1 (2005), 9–20 | DOI | MR | Zbl

[4] H. Whitney, “Non-separable and planar graphs”, Trans. Amer. Math. Soc., 34 (1932), 339–362 | MR

[5] H. Whitney, “2-Isomorphic graphs”, Amer. J. Math., 55 (1933), 245–254 | DOI | MR