Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2006_3_a33, author = {J. Glock}, title = {Uniqueness of the embedding of a~$2$-complex into a~$3$-manifold}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {83--85}, publisher = {mathdoc}, volume = {3}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a33/} }
J. Glock. Uniqueness of the embedding of a~$2$-complex into a~$3$-manifold. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 83-85. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a33/
[1] B. G. Casler, “An embedding theorem for connected 3-manifolds with boundary”, Proc. Amer. Math. Soc., 16 (1965), 559–566 | MR
[2] C. I. Hog-Angeloni, Detecting 3-Manifold Presentations, Lond. Math. Soc. LNS, 275, Cambridge University Press, 2000 | MR | Zbl
[3] C. I. Hog-Angeloni, J. Glock, “Embeddings of 2-complexes into 3-manifolds”, Journal of Knot Theory and Its Ramifications, 14:1 (2005), 9–20 | DOI | MR | Zbl
[4] H. Whitney, “Non-separable and planar graphs”, Trans. Amer. Math. Soc., 34 (1932), 339–362 | MR
[5] H. Whitney, “2-Isomorphic graphs”, Amer. J. Math., 55 (1933), 245–254 | DOI | MR