On Chern--Simons invariants of geometric $3$-manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 67-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SEMR_2006_3_a32,
     author = {N. V. Abrosimov},
     title = {On {Chern--Simons} invariants of geometric $3$-manifolds},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {67--70},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a32/}
}
TY  - JOUR
AU  - N. V. Abrosimov
TI  - On Chern--Simons invariants of geometric $3$-manifolds
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 67
EP  - 70
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a32/
LA  - en
ID  - SEMR_2006_3_a32
ER  - 
%0 Journal Article
%A N. V. Abrosimov
%T On Chern--Simons invariants of geometric $3$-manifolds
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 67-70
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a32/
%G en
%F SEMR_2006_3_a32
N. V. Abrosimov. On Chern--Simons invariants of geometric $3$-manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 67-70. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a32/

[1] D. Coulson, O. A. Goodman, C. D. Hodgson, W. D. Neumann, “Computing Arithmetic Invariants of 3-Manifolds”, Experemental Mathematics, 9:1 (2000), 127–152 | MR | Zbl

[2] H. M. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, “On the arithmetic 2-bridge knots and link orbifolds and a new knot invariant”, Journal of Knots and its Ramification, 4:1 (1995), 81–114 | DOI | MR | Zbl

[3] H. M. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, “On Volumes and Chern–Simons Invariants of Geometric 3-Manifolds”, J. Math. Sci. Univ. Tokyo, 3 (1996), 723–744 | MR

[4] C. D. Hodgson, S. P. Kerckhoff, “Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery”, J. Differential Geom., 48 (1998), 1–59 | MR | Zbl

[5] A.-Ch. Kim, A. Mednykh, On the hyperbolic structure on the Whitehead link cone–manifold, Preprint, 1999

[6] S. Kojima, “Deformations of hyperbolic 3-cone-manifolds”, J. Differential Geom., 49 (1998), 469–516 | MR | Zbl

[7] A. Mednykh, A. Vesnin, “On the volume of hyperbolic Whitehead link cone–manifolds”, SCIENTIA, Series A: Mathematical Sciencies, Universidad Tecnica Federico Santa Maria, Valparaiso, Chile, 8 (2002), 1–11 | MR | Zbl

[8] A. Mednykh, “On hyperbolic and spherical volumes for knot and link cone-manifolds”, Kleinian groups and hyperbolic 3-manifolds (Warwick, 2001), Cambridge Univ. Press, Cambridge, 2003, 145–163 | MR | Zbl

[9] A. Mednykh, “On the remarkable properties of the hyperbolic Whitehead link cone–manifold”, Series Knots and Everything, 24, World Scientific, Singapure et al., 2000, 290–305 | MR | Zbl

[10] A. Mednykh, A. Vesnin, “On the volume of hyperbolic Whitehead link cone-manifolds”, SCIENTIA, Series A: Mathematical Sciencies, Universidad Tecnica Federico Santa Maria, Valparaiso, Chile, 8 (2002), 1–11 | MR | Zbl

[11] G. D. Mostov, “Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms”, Publ. IHS, 34 (1968), 53–104 | MR