@article{SEMR_2006_3_a30,
author = {R. R. Isangulov},
title = {Isospectral flat orientable $2$-orbifolds},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {60--61},
year = {2006},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a30/}
}
R. R. Isangulov. Isospectral flat orientable $2$-orbifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 60-61. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a30/
[1] M. Kac, “Can one hear the shape of a drum?”, Amer. Math. Monthly, 73 (1966), 1–23 | DOI | MR | Zbl
[2] J. H. Conway, The sensual (quadratic) form, The Carus Mathematical Monographs, 26, The Mathematical Association of America, 1997 | MR | Zbl
[3] J. Milnor, “Eigenvalues of the Laplace operator on certain manifolds”, Proc. Nat. Acad. Sci. U.S.A., 51 (1964), 542 | DOI | MR | Zbl
[4] P. Buser, Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, 106, Birkhäuser, Boston, Basel, Berlin, 1992 | MR | Zbl
[5] Y.-J. Chiang, “Spectral geometry of $V$-manifolds and its application to harmonic maps”, Differential geometry: partial differential equations on manifolds, Part 1 (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Amer. Math. Soc., Providence, RI, 1993, 93–99 | MR | Zbl
[6] R. R. Isangulov, “Isospectral flat $3$-manifolds”, Sib. Math. J., 45:5 (2004), 894–914 | DOI | MR | Zbl
[7] R. Brooks, “Constructing isospectral manifolds”, Amer. Math. Monthly, 95 (1988), 823–839 | DOI | MR | Zbl