On degrees of approximation of some classes by polynomials with respect to generalized Haar system
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 92-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalized anysotropic Lorentz space is considered. A sufficient condition of embedding the class $H_{\varphi,\theta}^r$ into the Lorentz space is formulated; and the degree of approximation of this class sums by polynomials with respect to the generalized Haar system is determined.
@article{SEMR_2006_3_a3,
     author = {G. A. Akishev},
     title = {On degrees of approximation of some classes by polynomials with respect to generalized {Haar} system},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {92--105},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a3/}
}
TY  - JOUR
AU  - G. A. Akishev
TI  - On degrees of approximation of some classes by polynomials with respect to generalized Haar system
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 92
EP  - 105
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a3/
LA  - ru
ID  - SEMR_2006_3_a3
ER  - 
%0 Journal Article
%A G. A. Akishev
%T On degrees of approximation of some classes by polynomials with respect to generalized Haar system
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 92-105
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a3/
%G ru
%F SEMR_2006_3_a3
G. A. Akishev. On degrees of approximation of some classes by polynomials with respect to generalized Haar system. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 92-105. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a3/

[1] A. P. Blozinski, “Multivariate rearragements and Banach function spaces with mixed norms”, Transactions American Mathematical Society, 263 (1981), 146–167 | MR

[2] E. D. Nursultanov, “O koeffitsientakh kratnykh ryadov Fure $L_p$-prostranstv”, Izvestiya Rossiiskoi Akademii Nauk, Seriya Matematicheskaya, 64:1 (2000), 95–122 | MR

[3] B. I. Golubov, “Ob odnom klasse polnykh ortogonalnykh sistem”, Sibirskii Matematicheskii Zhurnal, 9 (1968), 297–314 | MR | Zbl

[4] N. Ya. Vilenkin, “Ob odnom klasse polnykh ortogonalnykh sistem”, Izvestiya Akademii Nauk SSSR, Seriya Matematicheskaya, 11:4 (1947), 363–400 | MR

[5] A. V. Andrianov, “Priblizhenie funktsii iz klassov $MH_q^r$ polinomami Khaara”, Matematicheskie Zametki, 66 (1999), 323–335 | MR | Zbl

[6] P. Osvald, “Ob $N$-chlennykh priblizheniyakh po sisteme Khaara v $H^s$-normakh”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, Moskva, 1999, 137–163 | MR

[7] G. Akishev, “O poryadkakh priblizheniya funktsionalnykh klassov v prostranstve Lorentsa s anizotropnoi normoi”, Tezisy dokl. 3-mezhdunarod. nauchn. konferents. “Problemy differents. urav. analiza i algebry”, Aktobe, 2003, 9–10

[8] G. Akishev, “O poryadkakh priblizheniya funktsionalnykh klassov polinomami po obobschennoi sisteme Khaara”, Izvestiya Vuzov, Seriya Matem., 2005, no. 3, 13–22 | MR | Zbl

[9] H. Johonsson, Embedding of $H_p^\omega$ in some Lorentz spases, Research Report University Umea No 6, 1975, 3–38

[10] S. V. Lapin, Nekotorye teoremy vlozheniya dlya proizvedenii funktsii, Rukopis deponirovana v VINITI, 1036-80, 1980, 3–31

[11] G. Akishev, “Obobschennaya sistema Khaara i teoremy vlozheniya v simmetrichnye prostranstva”, Fundament. i Priklad. Matem., 8 (2002), 319–334 | MR | Zbl

[12] S. Tazabekov, E. S. Smailov, “O nekotorykh dostatochnykh usloviyakh vlozheniya v prostranstva Lorentsa”, Izvestiya Akademii Nauk Kazakhskoi SSR, Seriya Fiz.-Matem., 1989, no. 5, 50–54 | MR

[13] G. Akishev, “Otsenka poryadka priblizheniya klassov Besova trigonometricheskimi polinomami”, Vestnik Karagandinskogo Universiteta, Seriya Matematika, 3 (2004), 9–16 | MR

[14] V. N. Temlyakov, “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Trudy Matematicheskogo Instituta AN SSSR, 178, 1986, 3–112 | MR

[15] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl