Weyl almost periodic selections of supports of measure-valued functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 384-392

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there exist Weyl almost periodic selections of supports of Weyl almost periodic measure-valued functions $\mathbb R\ni t\to\mu[.;t]\in\mathcal M(U)$ taking values in the space $\mathcal M(U)$ of Borel probability measures defined on a complete separable metric space $U$.
@article{SEMR_2006_3_a25,
     author = {L. I. Danilov},
     title = {Weyl almost periodic selections of supports of measure-valued functions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {384--392},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a25/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Weyl almost periodic selections of supports of measure-valued functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 384
EP  - 392
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a25/
LA  - ru
ID  - SEMR_2006_3_a25
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Weyl almost periodic selections of supports of measure-valued functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 384-392
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a25/
%G ru
%F SEMR_2006_3_a25
L. I. Danilov. Weyl almost periodic selections of supports of measure-valued functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 384-392. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a25/