Weyl almost periodic selections of supports of measure-valued functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 384-392.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there exist Weyl almost periodic selections of supports of Weyl almost periodic measure-valued functions $\mathbb R\ni t\to\mu[.;t]\in\mathcal M(U)$ taking values in the space $\mathcal M(U)$ of Borel probability measures defined on a complete separable metric space $U$.
@article{SEMR_2006_3_a25,
     author = {L. I. Danilov},
     title = {Weyl almost periodic selections of supports of measure-valued functions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {384--392},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a25/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Weyl almost periodic selections of supports of measure-valued functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 384
EP  - 392
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a25/
LA  - ru
ID  - SEMR_2006_3_a25
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Weyl almost periodic selections of supports of measure-valued functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 384-392
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a25/
%G ru
%F SEMR_2006_3_a25
L. I. Danilov. Weyl almost periodic selections of supports of measure-valued functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 384-392. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a25/

[1] J. Andres, “Bounded, almost-periodic and periodic solutions of quasilinear differential inclusions”, Differential Inclusions and Optimal Control, Lecture Notes in Nonlinear Anal., 2, eds. J. Andres, L. Górniewicz, P. Nistri, 1998, 35–50

[2] J. Andres, A. M. Bersani, K. Leśniak, “On some almost-periodicity problems in various metrics”, Acta Appl. Math., 65 (2001), 35–57 | DOI | MR | Zbl

[3] B. F. Bylov, R. E. Vinograd, V. Ya. Lin, O. O. Lokutsievskii, “O topologicheskikh prichinakh anomalnogo povedeniya nekotorykh pochti periodicheskikh sistem”, Problemy asimptoticheskoi teorii nelineinykh kolebanii, Naukova dumka, Kiev, 1977

[4] L. I. Danilov, “Pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Izvestiya otdela matematiki i informatiki UdGU, Izhevsk, 1993, no. 1, 16–78 | Zbl

[5] A. M. Dolbilov, I. Ya. Shneiberg, “Pochti periodicheskie mnogoznachnye otobrazheniya i ikh secheniya”, Sibirskii matematicheskii zhurnal, 32 (1991), 172–175 | MR | Zbl

[6] A. Fryszkowski, “Continuous selections for a class of non-convex multivalued maps”, Studia Math., 76:2 (1983), 163–174 | MR | Zbl

[7] L. I. Danilov, “Meroznachnye pochti periodicheskie funktsii i pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Matem. sbornik, 188 (1997), 3–24 | MR | Zbl

[8] L. I. Danilov, “O pochti periodicheskikh mnogoznachnykh otobrazheniyakh”, Matem. zametki, 68:1 (2000), 82–90 | MR | Zbl

[9] L. I. Danilov, “On Weyl almost periodic selections of multivalued maps”, J. Math. Anal. Appl., 316 (2006), 110–127 | DOI | MR | Zbl

[10] L. I. Danilov, O pochti periodicheskikh po Veilyu secheniyakh mnogoznachnykh otobrazhenii, Dep. v VINITI 09.06.2004, No. 981-B2004, FTI UrO RAN, Izhevsk, 2004

[11] L. I. Danilov, On Besicovitch almost periodic selections of multivalued maps, 2005., arXiv: math/0503293

[12] B. M. Levitan, Pochti-periodicheskie funktsii, GITTL, Moskva, 1953

[13] L. I. Danilov, On equi-Weyl almost periodic selections of multivalued maps, 2003, arXiv: math/0310010 | MR

[14] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, Moskva, 1985 | MR | Zbl

[15] L. I. Danilov, “O pochti periodicheskikh po Veilyu meroznachnykh funktsiyakh”, Izvestiya Instituta matematiki i informatiki UdGU, Izhevsk, 2005, no. 1(31), 79–98

[16] L. I. Danilov, “O ravnomernoi approksimatsii pochti periodicheskikh po Veilyu i pochti periodicheskikh po Bezikovichu funktsii”, Izvestiya Instituta matematiki i informatiki UdGU, Izhevsk, 2006, no. 1(35), 33–48