Dynamics of properties of Toeplitz operators on weighted Bergman spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 362-383.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a review paper based on the series of papers [4]–[7], devoted to a study of properties of Toeplitz operators with special symbols on weighted Bergman spaces in dependence of weight parameter. Here we consider a special weight connected with the natural Bergman metric. The weight parameter is denoted by $\lambda$ and runs over $(-1,+\infty)$.
@article{SEMR_2006_3_a24,
     author = {N. L. Vasilevskii and S. M. Grudskii and A. N. Karapetyants},
     title = {Dynamics of properties of {Toeplitz} operators on weighted {Bergman} spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {362--383},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a24/}
}
TY  - JOUR
AU  - N. L. Vasilevskii
AU  - S. M. Grudskii
AU  - A. N. Karapetyants
TI  - Dynamics of properties of Toeplitz operators on weighted Bergman spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 362
EP  - 383
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a24/
LA  - ru
ID  - SEMR_2006_3_a24
ER  - 
%0 Journal Article
%A N. L. Vasilevskii
%A S. M. Grudskii
%A A. N. Karapetyants
%T Dynamics of properties of Toeplitz operators on weighted Bergman spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 362-383
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a24/
%G ru
%F SEMR_2006_3_a24
N. L. Vasilevskii; S. M. Grudskii; A. N. Karapetyants. Dynamics of properties of Toeplitz operators on weighted Bergman spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 362-383. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a24/

[1] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, Moskva, 1988 | MR | Zbl

[2] I. Ts. Gokhberg, N. Ya. Krupnik, “Algebra, porozhdennaya odnomernymi singulyarnymi integralnymi operatorami s kusochno-nepreryvnymi koeffitsientami”, Funkts. Anal. i Prilozh., 4:3 (1970), 26–36 | MR | Zbl

[3] S. M. Grudsky, N. L. Vasilevski, “Bergman–Toeplitz operators: radial component influence”, Integral Equations Operator Theory, 40:1 (2001), 16–33 | DOI | MR | Zbl

[4] S. M. Grudsky, A. N. Karapetyants, N. L. Vasilevski, “Toeplits operators on the unit ball in $\mathbb{C}^n$ with radial symbols”, J. Operator Theory, 49:2 (2003), 325–346 | MR | Zbl

[5] S. M. Grudsky, A. N. Karapetyants, N. L. Vasilevski, “Dynamics of properties of Toeplitz operators with radial symbols”, Integral Equations Operator Theory, 50:2 (2004), 217–253 | DOI | MR | Zbl

[6] S. M. Grudsky, A. N. Karapetyants, N. L. Vasilevski, “Dynamics of properties of Toeplitz operators on the upper half plane: parabolic case”, J. Operator Theory, 52:1 (2004), 185–214 | MR | Zbl

[7] S. M. Grudsky, A. N. Karapetyants, N. L. Vasilevski, “Dynamics of properties of Toeplitz operators on the upper half plane: hyperbolic case”, Bol. Soc. Mat. Mexicana (3), 10 (2004), 119–138 | MR | Zbl

[8] R. Hagen, S. Roch, B. Silbermann, $C^*$-Algebras and numerical analysis, Marcel Dekker, Inc., New York, Basel, 2001 | MR

[9] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Springer Verlag, New York, Inc., 2000 | MR | Zbl

[10] S. Klimek, A. Lesniewski, “Quantum Rieman surfaces I. The unit disk”, Commun. Math. Phys., 146 (1992), 103–122 | DOI | MR | Zbl

[11] N. L. Vasilevskii, “Banakhovy algebry, porozhdennye dvumernymi integralnymi operatorami s yadrom Bergmana i kusochno-nepreryvnymi koeffitsientami. I”, Izvestiya vuzov. Matematika, 285:2 (1986), 12–21 | MR

[12] N. L. Vasilevski, “Bergman space structure, commutative algebras of Toeplitz operators and hyperbolic geometry”, Integral Equations Operator Theory, 46 (2003), 235–251 | MR | Zbl

[13] N. L. Vasilevski, “Toeplitz operators on the Bergman spaces: inside-the-domain effects”, Contemporary Mathematics, 289, 2001, 79–146 | MR | Zbl

[14] K. Zhu, “Positive Toeplitz operators on weighted Bergman space”, J. Operator Theory, 20 (1988), 329–357 | MR | Zbl