List $(p,q)$-coloring of sparse plane graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 355-361.

Voir la notice de l'article provenant de la source Math-Net.Ru

For plane graphs of large enough girth we prove an upper bound for the list $(p,q)$-chromatic number which differs from the best possible one by at most an additive term that does not depend on $p$.
@article{SEMR_2006_3_a23,
     author = {O. V. Borodin and A. O. Ivanova and T. K. Neustroeva},
     title = {List $(p,q)$-coloring of sparse plane graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {355--361},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a23/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
AU  - T. K. Neustroeva
TI  - List $(p,q)$-coloring of sparse plane graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 355
EP  - 361
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a23/
LA  - ru
ID  - SEMR_2006_3_a23
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%A T. K. Neustroeva
%T List $(p,q)$-coloring of sparse plane graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 355-361
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a23/
%G ru
%F SEMR_2006_3_a23
O. V. Borodin; A. O. Ivanova; T. K. Neustroeva. List $(p,q)$-coloring of sparse plane graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 355-361. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a23/

[1] Wegner G., Graphs with given diameter and a coloring problem, Technical Report, University of Dortmund, 1977

[2] Jensen T. R., Toft B., Graph coloring problems, John–Wiley Sons, New York, 1995 | MR | Zbl

[3] Borodin O. V., Brusma Kh., Glebov A. N., Van den Khoivel Ya., “Minimalnye stepeni i khromaticheskie chisla kvadratov ploskikh grafov”, Diskret. analiz i issled. operatsii. Ser. 1, 8:4 (2001), 9–33 | MR | Zbl

[4] O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “2-distantsionnaya raskraska razrezhennykh ploskikh grafov”, Sibirskie Elektronnye Matematicheskie Izvestiya, 1 (2004), 76–90 http://semr.math.nsc.ru/ | MR | Zbl

[5] O. V. Borodin, A. N. Glebov, A. O. Ivanova, T. K. Neustroeva, V. A. Tashkinov, “Dostatochnye usloviya 2-distantsionnoi $\Delta+1$-raskrashivaemosti ploskikh grafov”, Sibirskie Elektronnye Matematicheskie Izvestiya, 1 (2004), 129–141 http://semr.math.nsc.ru/ | MR | Zbl

[6] O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Dostatochnye usloviya 2-distantsionnoi $\Delta+1$-raskrashivaemosti ploskikh grafov s obkhvatom 6”, Diskretnyi analiz i issledovanie operatsii. Seriya 1, 12:3 (2005), 32–47 | MR

[7] O. V. Borodin, Brusma Kh., A. N. Glebov, Van den Khoivel, “Minimalnye stepeni i khromaticheskie chislakvadratov ploskikh grafov”, Diskretnyi analiz i issledovanie operatsii, Seriya 1, 8:4 (2001), 9–33 | MR | Zbl

[8] O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “$(p, q)$-raskraska razrezhennykh ploskikh grafov” (to appear)