List $(p,q)$-coloring of sparse plane graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 355-361

Voir la notice de l'article provenant de la source Math-Net.Ru

For plane graphs of large enough girth we prove an upper bound for the list $(p,q)$-chromatic number which differs from the best possible one by at most an additive term that does not depend on $p$.
@article{SEMR_2006_3_a23,
     author = {O. V. Borodin and A. O. Ivanova and T. K. Neustroeva},
     title = {List $(p,q)$-coloring of sparse plane graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {355--361},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a23/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
AU  - T. K. Neustroeva
TI  - List $(p,q)$-coloring of sparse plane graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 355
EP  - 361
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a23/
LA  - ru
ID  - SEMR_2006_3_a23
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%A T. K. Neustroeva
%T List $(p,q)$-coloring of sparse plane graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 355-361
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a23/
%G ru
%F SEMR_2006_3_a23
O. V. Borodin; A. O. Ivanova; T. K. Neustroeva. List $(p,q)$-coloring of sparse plane graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 355-361. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a23/