On a~class of groups with strongly embedded subgroup
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 346-351

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a group $G$ with finite involution and strongly embedded subgroup of shape $B=R\times T$ where $R$ is an abelian periodic subgroup, $T=U\leftthreetimes H$ is a Frobenius group with abelian core $U$ containing involution is isomorphic to $R\times L_2(P)$ where $P$ is a locally finite field of characteristic $2$.
@article{SEMR_2006_3_a22,
     author = {S. A. Tarasov},
     title = {On a~class of groups with strongly embedded subgroup},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {346--351},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a22/}
}
TY  - JOUR
AU  - S. A. Tarasov
TI  - On a~class of groups with strongly embedded subgroup
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 346
EP  - 351
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a22/
LA  - ru
ID  - SEMR_2006_3_a22
ER  - 
%0 Journal Article
%A S. A. Tarasov
%T On a~class of groups with strongly embedded subgroup
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 346-351
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a22/
%G ru
%F SEMR_2006_3_a22
S. A. Tarasov. On a~class of groups with strongly embedded subgroup. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 346-351. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a22/