On a class of groups with strongly embedded subgroup
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 346-351
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that a group $G$ with finite involution and strongly embedded subgroup of shape $B=R\times T$ where $R$ is an abelian periodic subgroup, $T=U\leftthreetimes H$ is a Frobenius group with abelian core $U$ containing involution is isomorphic to $R\times L_2(P)$ where $P$ is a locally finite field of characteristic $2$.
@article{SEMR_2006_3_a22,
author = {S. A. Tarasov},
title = {On a~class of groups with strongly embedded subgroup},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {346--351},
year = {2006},
volume = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a22/}
}
S. A. Tarasov. On a class of groups with strongly embedded subgroup. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 346-351. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a22/
[1] Mazurov V. D., “O beskonechnykh gruppakh s abelevymi tsentralizatorami involyutsii”, Algebra i logika, 39:1 (2000), 74–86 | MR | Zbl
[2] Sozutov A. I., “O nekotorykh beskonechnykh gruppakh s silno vlozhennoi podgruppoi”, Algebra i logika, 39:5 (2000), 602–617 | MR
[3] Suchkov N. M., “O periodicheskikh gruppakh s abelevymi tsentralizatorami involyutsii”, Matematicheskii sbornik, 193:2 (2002), 153–160 | MR | Zbl
[4] Suchkov N. M., Tarasov S. A., “O gruppakh s zadannoi silno vlozhennoi podgruppoi”, Vestnik KrasGU. Fiziko-matematicheskie nauki, 2005, no. 4, 169–172