Morawetz problem for generalized Tricomi equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 71-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the Morawetz problem, which arises in mathematical models of transonic flows. A theorem on existence and uniqueness of the solution to Morawetz problem for generalized Tricomi equation with boundary conditions is proven.
@article{SEMR_2006_3_a2,
     author = {A. A. Akimov},
     title = {Morawetz problem for generalized {Tricomi} equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {71--82},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a2/}
}
TY  - JOUR
AU  - A. A. Akimov
TI  - Morawetz problem for generalized Tricomi equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 71
EP  - 82
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a2/
LA  - ru
ID  - SEMR_2006_3_a2
ER  - 
%0 Journal Article
%A A. A. Akimov
%T Morawetz problem for generalized Tricomi equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 71-82
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a2/
%G ru
%F SEMR_2006_3_a2
A. A. Akimov. Morawetz problem for generalized Tricomi equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 71-82. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a2/

[1] Bers L., Matematicheskie voprosy dozvukovoi i okolozvukovoi gazovoi dinamiki, Nauka, Moskva, 1961 | MR

[2] Frankl F. I., “O ploskoparallelnykh vozdushnykh techeniyakh cherez kanaly pri okolozvukovykh skorostyakh”, Mat. sb., 40:1 (1933), 59–72 | MR | Zbl

[3] Morawetz C. S., “Note on a maximum principle and a uniqueness theorem for an elliptic-hyperbolic equation”, Proc. Roy. Soc., 236:1024 (1956), 141–144 | MR | Zbl

[4] Cook L. P., “Uniqueness of transonic flows”, Indiana University Math. J., 27:1 (1978), 51–71 | DOI | MR | Zbl

[5] Giles M. B., Drela M., “Fluid Dynamics computation”, AIAA J., 25:9 (1987), 1199–1206 | DOI | Zbl

[6] Obayashi S., Flux vector splitting for the inviscid gas dynamics with applications to finite-difference methods, AIAA Paper, No 95, 1995, 33–42

[7] Vragov V. N., “K voprosu o edinstvennosti resheniya obobschennoi zadachi Trikomi”, DAN, 226:4 (1976), 761–764 | MR | Zbl

[8] Sabitov K. B., Akimov A. A., “K teorii analoga zadachi Neimana dlya uravneniya smeshannogo tipa”, Izv. VUZov. Matem., 2001, no. 10, 73–80 | MR

[9] Akimov A. A., “Teorema edinstvennosti resheniya zadachi Moravets dlya uravneniya Chaplygina”, Trudy mezhdunarodnoi konferentsii “Spektralnaya teoriya differentsialnykh operatorov i rodstvennye problemy” posvyaschennoi yubileyu akademika V. A. Ilina (Sterlitamak. SF AN RB), v. 2, Gilem, Ufa, 2003, 15–20

[10] Protter M. H., “Uniqueness theorems for the Tricomi problem”, Part I, J. Rational Mech. and Analysis, 2:1 (1953), 107–114 ; Part II, 4:5 (1955), 721–733 | MR | Zbl | MR

[11] Smirnov M. M., Uravneniya smeshannogo tipa, Nauka, Moskva, 1985 | MR