Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2006_3_a16, author = {Jianhua Shen and Ying Ge and Zhihong Ge}, title = {A~note on weakly hereditarily closure-preserving families}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {253--256}, publisher = {mathdoc}, volume = {3}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a16/} }
TY - JOUR AU - Jianhua Shen AU - Ying Ge AU - Zhihong Ge TI - A~note on weakly hereditarily closure-preserving families JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2006 SP - 253 EP - 256 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a16/ LA - en ID - SEMR_2006_3_a16 ER -
Jianhua Shen; Ying Ge; Zhihong Ge. A~note on weakly hereditarily closure-preserving families. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 253-256. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a16/
[1] D. K. Burke, “Covering properties”, Handbook of Set-Theoretic Topology, eds. Kumen K. and Vaughan J. E., North-Holland, Amsterdan, 1984, 347–422 | MR
[2] D. Burke, R. Engelking and D. Lutzer, “Hereditarily closure-preserving and metrizability”, Proc. Amer. Math. Soc., 51 (1975), 483–488 | DOI | MR | Zbl
[3] S. P. Franklin, “Spaces in which sequence suffice”, Fund. Math., 57 (1965), 107–115 | MR | Zbl
[4] S. Lin, “A note on paper "On sum theorems for $M_1$-spacws"”, J. of Math. Research and Exposition, 10 (1990), 296–297 | MR | Zbl
[5] S. Lin, “On $g$-metrizable spaces”, Chinese Ann. Math., Ser A, 13 (1992), 403–409 | MR | Zbl
[6] S. Lin, “Regularity in book “Generalized Metric Spaces and Mappings””, J. of Ningder Teachers College, 11 (1999), 241–247
[7] S. Lin and L. Yan, “A note on spaces with a $\sigma$-compact-finite weak base”, Tsukuba J. Math., 28 (2004), 85–91 | MR | Zbl
[8] L. Yang, “On sum theorems for $M_1$-spacws”, J. of Math. Research and Exposition, 8 (1988), 22