A~note on weakly hereditarily closure-preserving families
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 253-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this brief note, we discuss weakly hereditarily closurepreserving families of subsets of a space and answer a question on this class of families posed by Z. Li.
@article{SEMR_2006_3_a16,
     author = {Jianhua Shen and Ying Ge and Zhihong Ge},
     title = {A~note on weakly hereditarily closure-preserving families},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {253--256},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a16/}
}
TY  - JOUR
AU  - Jianhua Shen
AU  - Ying Ge
AU  - Zhihong Ge
TI  - A~note on weakly hereditarily closure-preserving families
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 253
EP  - 256
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a16/
LA  - en
ID  - SEMR_2006_3_a16
ER  - 
%0 Journal Article
%A Jianhua Shen
%A Ying Ge
%A Zhihong Ge
%T A~note on weakly hereditarily closure-preserving families
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 253-256
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a16/
%G en
%F SEMR_2006_3_a16
Jianhua Shen; Ying Ge; Zhihong Ge. A~note on weakly hereditarily closure-preserving families. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 253-256. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a16/

[1] D. K. Burke, “Covering properties”, Handbook of Set-Theoretic Topology, eds. Kumen K. and Vaughan J. E., North-Holland, Amsterdan, 1984, 347–422 | MR

[2] D. Burke, R. Engelking and D. Lutzer, “Hereditarily closure-preserving and metrizability”, Proc. Amer. Math. Soc., 51 (1975), 483–488 | DOI | MR | Zbl

[3] S. P. Franklin, “Spaces in which sequence suffice”, Fund. Math., 57 (1965), 107–115 | MR | Zbl

[4] S. Lin, “A note on paper "On sum theorems for $M_1$-spacws"”, J. of Math. Research and Exposition, 10 (1990), 296–297 | MR | Zbl

[5] S. Lin, “On $g$-metrizable spaces”, Chinese Ann. Math., Ser A, 13 (1992), 403–409 | MR | Zbl

[6] S. Lin, “Regularity in book “Generalized Metric Spaces and Mappings””, J. of Ningder Teachers College, 11 (1999), 241–247

[7] S. Lin and L. Yan, “A note on spaces with a $\sigma$-compact-finite weak base”, Tsukuba J. Math., 28 (2004), 85–91 | MR | Zbl

[8] L. Yang, “On sum theorems for $M_1$-spacws”, J. of Math. Research and Exposition, 8 (1988), 22