Binarity for $\aleph_0$-categorical weakly o-minimal theories of convexity rank~1
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 185-196

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that $\aleph_0$-categorical weakly o-minimal theories of convexity rank 1 are binary.
@article{SEMR_2006_3_a11,
     author = {B. Sh. Kulpeshov},
     title = {Binarity for $\aleph_0$-categorical weakly o-minimal theories of convexity rank~1},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {185--196},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a11/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
TI  - Binarity for $\aleph_0$-categorical weakly o-minimal theories of convexity rank~1
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 185
EP  - 196
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a11/
LA  - ru
ID  - SEMR_2006_3_a11
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%T Binarity for $\aleph_0$-categorical weakly o-minimal theories of convexity rank~1
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 185-196
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a11/
%G ru
%F SEMR_2006_3_a11
B. Sh. Kulpeshov. Binarity for $\aleph_0$-categorical weakly o-minimal theories of convexity rank~1. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 185-196. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a11/