Binarity for $\aleph_0$-categorical weakly o-minimal theories of convexity rank~1
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 185-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that $\aleph_0$-categorical weakly o-minimal theories of convexity rank 1 are binary.
@article{SEMR_2006_3_a11,
     author = {B. Sh. Kulpeshov},
     title = {Binarity for $\aleph_0$-categorical weakly o-minimal theories of convexity rank~1},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {185--196},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a11/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
TI  - Binarity for $\aleph_0$-categorical weakly o-minimal theories of convexity rank~1
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 185
EP  - 196
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a11/
LA  - ru
ID  - SEMR_2006_3_a11
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%T Binarity for $\aleph_0$-categorical weakly o-minimal theories of convexity rank~1
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 185-196
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a11/
%G ru
%F SEMR_2006_3_a11
B. Sh. Kulpeshov. Binarity for $\aleph_0$-categorical weakly o-minimal theories of convexity rank~1. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 185-196. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a11/

[1] H. D. Macpherson, D. Marker, and C. Steinhorn, “Weakly o-minimal structures and real closed fields”, Transactions of The American Mathematical Society, 352 (2000), 5435–5483 | DOI | MR | Zbl

[2] M. Dickmann, “Elimination of quantifiers for ordered valuation rings”, The Journal of Symbolic Logic, 52 (1987), 116–128 | DOI | MR | Zbl

[3] B. Sh. Kulpeshov, “Weakly o-minimal structures and some of their properties”, The Journal of Symbolic Logic, 63 (1998), 1511–1528 | DOI | MR | Zbl

[4] A. Pillay, C. Steinhorn, “Definable sets in ordered structures I”, Transactions of the American Mathematical Society, 295 (1986), 565–592 | DOI | MR | Zbl

[5] R. D. Arefev, “O svoistve monotonnosti slabo o-minimalnykh modelei”, Algebra and Model Theory, eds. A. G. Pinus and K. N. Ponomaryov, Novosibirsk, 1997, 8–15

[6] B. S. Baizhanov, “Expansion of a model of a weakly o-minimal theory by a family of unary predicates”, The Journal of Symbolic Logic, 66 (2001), 1382–1414 | DOI | MR | Zbl

[7] B. Sh. Kulpeshov, “Some properties of $\aleph_0$–categorical weakly o-minimal theories”, Algebra and Model Theory, eds. A. G. Pinus and K. N. Ponomaryov, Novosibirsk, 1997, 78–98

[8] B. Sh. Kulpeshov, “O binarnosti $\aleph_0$-kategorichnykh slabo o-minimalnykh teorii”, Algebra i Logika, 44 (2005), 459–473 | MR