Periodic solutions of some linear systems of differential equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 169-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the time-periodic solutions of a linear operator-differential equation and describe the structure of the set of periods, for which our problem admits a unique solution. Applications are given for some systems of integro-differential equations over a sphere.
@article{SEMR_2006_3_a10,
     author = {Dang Khanh Hoi},
     title = {Periodic solutions of some linear systems of differential equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {169--184},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a10/}
}
TY  - JOUR
AU  - Dang Khanh Hoi
TI  - Periodic solutions of some linear systems of differential equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 169
EP  - 184
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a10/
LA  - ru
ID  - SEMR_2006_3_a10
ER  - 
%0 Journal Article
%A Dang Khanh Hoi
%T Periodic solutions of some linear systems of differential equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 169-184
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a10/
%G ru
%F SEMR_2006_3_a10
Dang Khanh Hoi. Periodic solutions of some linear systems of differential equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 169-184. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a10/

[1] A. A. Dezin, Obschie voprosy teorii granichnykh zadach, Nauka, Moskva, 1980 | MR | Zbl

[2] I. P. Kornfeld, Ya. G. Sinai, Ya. G. Fomin, Ergodicheskaya teoriya, Nauka,, Moskva, 1980 | MR

[3] Ya. G. Shubin, Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, Moskva, 1978 | MR

[4] R. Pale, Seminar po teoreme Ati–Zingera ob indekse, Mir, Moskva, 1970 | MR

[5] Fam Ngok Tkhao, “Estestvennye differentsialnye operatory na kompaktnykh mnogoobraziyakh”, Differentsialnye uravneniya, 5:1 (1969), 186–198 | MR

[6] U. Rudin, Funktsionalnyi analiz, Mir, Moskva, 1975 | MR

[7] Dang Khan Khoi, Periodicheskie resheniya evolyutsionnykh sistem estestvennykh uravnenii na rimanovykh mnogoobraziyakh (II), University of Hanoi, Faculty of Mathematics, Mechacics and Informatics, Hanoi, 1987, 5–13 | Zbl