Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2006_3_a0, author = {V. I. Kazarina}, title = {On automorphisms of strongly regular graphs with $\lambda=2$ and $\mu=3$, {II}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1--14}, publisher = {mathdoc}, volume = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a0/} }
V. I. Kazarina. On automorphisms of strongly regular graphs with $\lambda=2$ and $\mu=3$, II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 1-14. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a0/
[1] Makhnev A. A., Paduchikh D. V., “Ob avtomorfizmakh grafa Ashbakhera”, Algebra i logika, 40:2 (2001), 125–134 | MR | Zbl
[2] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc, 1989 | MR
[3] Makhnev A. A., Nosov V. V., “Ob avtomorfizmakh silno regulyarnykh grafov s $\lambda=0$, $\mu=2$”, Matem. sbornik, 185:3 (2004), 47–68 | MR
[4] Makhnev A. A., Minakova I. M., “Ob avtomorfizmakh grafov s $\lambda=1$, $\mu=2$”, Diskret. matem., 16:1 (2004), 95–104 | MR | Zbl
[5] Kazarina V. I., Makhnev A. A., “Ob avtomorfizmakh silno regulyarnykh grafov s $\lambda=2$ i $\mu=3$”, Problemy teor. i priklad. matem., Trudy 36 Region. molod. konf., Ekaterinburg, 2005, 35–36
[6] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl
[7] Cameron P., Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, 1999 | MR | Zbl