On automorphisms of strongly regular graphs with $\lambda=2$ and $\mu=3$, II
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 1-14

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a strongly regular graph with parameters $(676,45,2,3)$. Possible orders and subgraphs of fixed points automorphisms for $\Gamma$ are obtained.
@article{SEMR_2006_3_a0,
     author = {V. I. Kazarina},
     title = {On automorphisms of strongly regular graphs with $\lambda=2$ and $\mu=3$, {II}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a0/}
}
TY  - JOUR
AU  - V. I. Kazarina
TI  - On automorphisms of strongly regular graphs with $\lambda=2$ and $\mu=3$, II
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 1
EP  - 14
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a0/
LA  - ru
ID  - SEMR_2006_3_a0
ER  - 
%0 Journal Article
%A V. I. Kazarina
%T On automorphisms of strongly regular graphs with $\lambda=2$ and $\mu=3$, II
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 1-14
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a0/
%G ru
%F SEMR_2006_3_a0
V. I. Kazarina. On automorphisms of strongly regular graphs with $\lambda=2$ and $\mu=3$, II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 1-14. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a0/