A~numerical solution of diffraction problems for the radiation transport equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 88-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper boundary problems for the stationary integro-differential transport equation with generalized conditions of conjunction on the media interfaces are posed and numerically investigated. Methods of solution of a direct problem for the transport equation are proposed conformably to the problem of 3-D objects visualization and an optimization problem related with optics of clarifying coatings and to the problem of media masking. Results of proper numerical experiments are presented.
@article{SEMR_2005_2_a7,
     author = {I. V. Prokhorov and I. P. Yarovenko},
     title = {A~numerical solution of diffraction problems for the radiation transport equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {88--101},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a7/}
}
TY  - JOUR
AU  - I. V. Prokhorov
AU  - I. P. Yarovenko
TI  - A~numerical solution of diffraction problems for the radiation transport equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 88
EP  - 101
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a7/
LA  - ru
ID  - SEMR_2005_2_a7
ER  - 
%0 Journal Article
%A I. V. Prokhorov
%A I. P. Yarovenko
%T A~numerical solution of diffraction problems for the radiation transport equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 88-101
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a7/
%G ru
%F SEMR_2005_2_a7
I. V. Prokhorov; I. P. Yarovenko. A~numerical solution of diffraction problems for the radiation transport equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 88-101. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a7/

[1] Born M., Volf E., Osnovy optiki, Nauka, M., 1973

[2] Isimaru A., Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh, v. 1, 2, Mir, M., 1981

[3] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[4] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, 1961, 3–158

[5] Marchuk G. I., Lebedev V. I., Chislennye metody po teorii perenosa neitronov, Atomizdat, M., 1981 | MR

[6] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl

[7] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[8] Anikonov D. S., Kovtanyuk A. E., and Prokhorov I. V., Transport Equation and Tomography, VSP, Utrecht-Boston, 2002, viii+208 pp. | MR

[9] Anikonov D. S., Nazarov V. G., and Prokhorov I. V., Poorly Visible Media in $X$-Ray Tomography, VSP, Utrecht-Boston, 2002, viii+294 pp.

[10] Prokhorov I. V., “Kraevaya zadacha perenosa izlucheniya v neodnorodnoi srede s usloviyami otrazheniya na granitse”, Differentsialnye uravneniya, 36:6 (2000), 848–851 | MR | Zbl

[11] Prokhorov I. V., “Opredelenie poverkhnosti razdela sred po dannym tomograficheskogo prosvechivaniya”, ZhVM i MF, 42:10 (2002), 1542–1555 | MR | Zbl

[12] Prokhorov I. V., “O razreshimosti kraevoi zadachi teorii perenosa izlucheniya s obobschennymi usloviyami sopryazheniya na granitse razdela sred”, Izvestiya RAN. Seriya matematicheskaya, 67:6 (2003), 169–192 | MR | Zbl

[13] Prokhorov I. V., Yarovenko I. P., and Krasnikova T. V., “One Extremal Problem for the Radiation Transport Equation”, J. of Inverse and Ill-Posed Problems, 13:3 (2005) | MR

[14] Glasko V. B., Tikhonov A. N., Tikhonravov A. V., “O sinteze mnogosloinykh pokrytii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 14:1 (1974), 135–144 | MR

[15] Sveshnikov A. G., Tikhonravov A. V., Yanshin S. A., “Sintez opticheskikh pokrytii pri naklonnom padenii sveta”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 23:4 (1983), 929–935 | MR

[16] Sveshnikov A. G., Tikhonravov A. V., “Matematicheskie metody v teorii sinteza opticheskikh tonkosloinykh sistem”, Nekorrektnye zadachi estestvoznaniya, eds. A. N. Tikhonov, A. V. Goncharskii, Izd-vo Mosk. un-ta, M., 1987, 254–274

[17] Marchuk G. I., Mikhailov G. A., Nazarliev M. A. i dr., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976 | Zbl

[18] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR

[19] Mikhailov G. A., Vesovye metody Monte-Karlo, Izd-vo SO RAN, Novosibirsk, 2000 | MR

[20] J. Arvo, Proceedings of SIGGRAPH'86, Developments in Ray Tracing course notes (Aug. 1986)

[21] H. Wann Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan, “A Practical Model for Subsurface Light Transport”, Proceedings of SIGGRAPH'2001 (Los Angeles, August 2001), 511–518 | MR

[22] H. Wann Jensen, Realistic Image Synthesis Using Photon Mapping, AK Peters, 2001 | MR | Zbl