A~numerical solution of diffraction problems for the radiation transport equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 88-101
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper boundary problems for the stationary integro-differential transport equation with generalized conditions of conjunction on the media interfaces are posed and numerically investigated. Methods of solution of a direct problem for the transport equation are proposed conformably to the problem of 3-D objects visualization and an optimization problem related with optics of clarifying coatings and to the problem of media masking. Results of proper numerical experiments are presented.
@article{SEMR_2005_2_a7,
author = {I. V. Prokhorov and I. P. Yarovenko},
title = {A~numerical solution of diffraction problems for the radiation transport equation},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {88--101},
publisher = {mathdoc},
volume = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a7/}
}
TY - JOUR AU - I. V. Prokhorov AU - I. P. Yarovenko TI - A~numerical solution of diffraction problems for the radiation transport equation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2005 SP - 88 EP - 101 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a7/ LA - ru ID - SEMR_2005_2_a7 ER -
I. V. Prokhorov; I. P. Yarovenko. A~numerical solution of diffraction problems for the radiation transport equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 88-101. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a7/