A~numerical solution of diffraction problems for the radiation transport equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 88-101

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper boundary problems for the stationary integro-differential transport equation with generalized conditions of conjunction on the media interfaces are posed and numerically investigated. Methods of solution of a direct problem for the transport equation are proposed conformably to the problem of 3-D objects visualization and an optimization problem related with optics of clarifying coatings and to the problem of media masking. Results of proper numerical experiments are presented.
@article{SEMR_2005_2_a7,
     author = {I. V. Prokhorov and I. P. Yarovenko},
     title = {A~numerical solution of diffraction problems for the radiation transport equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {88--101},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a7/}
}
TY  - JOUR
AU  - I. V. Prokhorov
AU  - I. P. Yarovenko
TI  - A~numerical solution of diffraction problems for the radiation transport equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 88
EP  - 101
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a7/
LA  - ru
ID  - SEMR_2005_2_a7
ER  - 
%0 Journal Article
%A I. V. Prokhorov
%A I. P. Yarovenko
%T A~numerical solution of diffraction problems for the radiation transport equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 88-101
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a7/
%G ru
%F SEMR_2005_2_a7
I. V. Prokhorov; I. P. Yarovenko. A~numerical solution of diffraction problems for the radiation transport equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 88-101. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a7/