On the definability of the group $L_2(7)$ by its spectrum
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 250-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a group $G$, denote by $\omega(G)$ the spectrum of $G$, i.e., the set of its element orders. We prove that every group $G$ with $\omega(G)\subseteq\omega(L_2(7))=\{1,2,3,4,7\}$ in which the product of every two involutions is a $2$-element contains a normal $2$-subgroup with primary quotient. We also reduce the investigation of groups $G$ with $\omega(G)=\omega(L_2(7))$ to that of groups generated by involutions.
@article{SEMR_2005_2_a31,
     author = {A. A. Kuznetsov},
     title = {On the definability of the group $L_2(7)$ by its spectrum},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {250--252},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a31/}
}
TY  - JOUR
AU  - A. A. Kuznetsov
TI  - On the definability of the group $L_2(7)$ by its spectrum
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 250
EP  - 252
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a31/
LA  - ru
ID  - SEMR_2005_2_a31
ER  - 
%0 Journal Article
%A A. A. Kuznetsov
%T On the definability of the group $L_2(7)$ by its spectrum
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 250-252
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a31/
%G ru
%F SEMR_2005_2_a31
A. A. Kuznetsov. On the definability of the group $L_2(7)$ by its spectrum. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 250-252. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a31/

[1] A. Kh. Zhurtov, “O kvadratichnykh avtomorfizmakh abelevykh grupp”, Algebra i logika, 39:1 (2000), 320–328 | MR | Zbl

[2] A. Kh. Zhurtov, “O regulyarnykh avtomorfizmakh poryadka 3 i parakh Frobeniusa”, Sib. matem. zhurn., 41:2 (2000), 329–338 | MR | Zbl

[3] A. A. Kuznetsov, A. K. Shlepkin, S. A. Tarasov, “Ob odnom algoritme polucheniya sootnoshenii v svobodnoi bernsaidovskoi gruppe $B(m,n)$”, Trudy VI Mezhd. konf. “Diskretnye modeli v teorii upravlyayuschikh sistem”, MGU im. M. V. Lomonosova, M., 2004, 175–178

[4] V. D. Mazurov, “Gruppy s zadannym spektrom”, Izvestiya Uralskogo gos. un-ta, 36 (2005), 119–138 | MR | Zbl

[5] V. D. Mazurov, “O beskonechnykh gruppakh s abelevymi tsentralizatorami involyutsii”, Algebra i logika, 39:1 (2000), 74–86 | MR | Zbl

[6] I. N. Sanov, “Reshenie problemy Bernsaida dlya perioda 4”, Uchen. zapiski LGU. Ser. matem., 1940, no. 10, 166–170 | MR

[7] B. H. Neumann, “Groups with automorphisms that leave only the neutral element fixed”, Arch. Math., 7:1 (1956), 1–5 | DOI | MR | Zbl

[8] J. G. Thompson, “Finite groups with fixed-point-free automorphisms of prime order”, Proc. Nat. Acad. Sci. U.S.A, 45 (1959), 578–581 | DOI | MR | Zbl