An algorithm of finding planar surfaces in three-manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 192-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the question: does there exist an algorithm to decide whether or not a given $3$-manifold contains a proper essential planar surface? By a planar surface we mean a punctured disc. There is an algorithm, due to W. Jaco, to decide whether a $3$-manifold admits a proper essential disc, i.e., whether it is boundary reducible. A close result, an algorithm allow us to say whether a manifold contains a proper essential disc with a given boundary, was obtained by W. Haken in 60-th. In 1998 W. Jaco, H. Rubinstein and E. Sedgwick described an algorithm to decide whether or not a given linkmanifold contains a proper essential planar surface (a link-manifold is a compact orientable $3$-manifold whose boundary consists of tori) [1]. We generalize this result to manifolds with arbitrary boundaries. A slope on the boundary of a $3$-manifold $M$ is the isotopy class of a finite set of disjoint simple closed curves $\{\alpha_1,\dots,\alpha_n\}$ in $\partial M$ which are nontrivial and pairwise nonparallel. We say that the boundary of a proper surface $F$ has a slope $\alpha=\{\alpha_1,\dots,\alpha_n\}$ if the boundary components of $F$ are each parallel to one of the curves $\alpha_1,\dots,\alpha_n$.
@article{SEMR_2005_2_a25,
     author = {E. A. Sbrodova},
     title = {An algorithm of finding planar surfaces in three-manifolds},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {192--193},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a25/}
}
TY  - JOUR
AU  - E. A. Sbrodova
TI  - An algorithm of finding planar surfaces in three-manifolds
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 192
EP  - 193
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a25/
LA  - en
ID  - SEMR_2005_2_a25
ER  - 
%0 Journal Article
%A E. A. Sbrodova
%T An algorithm of finding planar surfaces in three-manifolds
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 192-193
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a25/
%G en
%F SEMR_2005_2_a25
E. A. Sbrodova. An algorithm of finding planar surfaces in three-manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 192-193. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a25/

[1] Jaco W. and Sedgwick E., Decision problems in the space of Dehn fillings, arXiv: math.GT/9811031 | MR

[2] Matveev S., Algoritmic Topology and Classification of 3-Manifolds, Springer-Verlag, Berlin, Heidelberg, 2003 | MR