Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2005_2_a24, author = {E. A. Fominykh and M. A. Ovchinnikov}, title = {On the complexity of graph-manifolds}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {190--191}, publisher = {mathdoc}, volume = {2}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a24/} }
E. A. Fominykh; M. A. Ovchinnikov. On the complexity of graph-manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 190-191. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a24/
[1] S. V. Matveev, “Complexity theory of three-dimensional manifolds”, Acta Appl. Math., 19:2 (1990), 101–130 | MR | Zbl
[2] Doklady Akademii Nauk, 400:1 (2005), 26–28 | MR
[3] S. Anisov, Complexity of torus bundles over the circle with monodromy (21,11), 2002, 1–43, arXiv: math.GT/0203215
[4] R. Frigerio, B. Martelli, C. Petronio, “Complexity and Heegaard genus of an infinite class of compact 3-manifolds”, Pacific J. Math., 210 (2003), 283–297 | DOI | MR | Zbl
[5] S. V. Matveev, Algorithmic topology and classification of 3-manifolds, Springer, 2003 | MR
[6] B. Martelli, C. Petronio, “3-manifolds having complexity at most 9”, Experimental Math., 10 (2001), 207–237 | MR
[7] B. Martelli, C. Petronio, “Complexity of geometric 3-manifolds”, Geom. Dedicata, 108 (2004), 15–69 | DOI | MR | Zbl