On the complexity of graph-manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 190-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide a new formula for an upper bound of the complexity of non-Seifert graph-manifolds obtained by gluing together two Seifert manifolds fibered over the disc with two exceptional fibers. This bound turns out to be sharp for many manifolds.
@article{SEMR_2005_2_a24,
     author = {E. A. Fominykh and M. A. Ovchinnikov},
     title = {On the complexity of graph-manifolds},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {190--191},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a24/}
}
TY  - JOUR
AU  - E. A. Fominykh
AU  - M. A. Ovchinnikov
TI  - On the complexity of graph-manifolds
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 190
EP  - 191
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a24/
LA  - en
ID  - SEMR_2005_2_a24
ER  - 
%0 Journal Article
%A E. A. Fominykh
%A M. A. Ovchinnikov
%T On the complexity of graph-manifolds
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 190-191
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a24/
%G en
%F SEMR_2005_2_a24
E. A. Fominykh; M. A. Ovchinnikov. On the complexity of graph-manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 190-191. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a24/

[1] S. V. Matveev, “Complexity theory of three-dimensional manifolds”, Acta Appl. Math., 19:2 (1990), 101–130 | MR | Zbl

[2] Doklady Akademii Nauk, 400:1 (2005), 26–28 | MR

[3] S. Anisov, Complexity of torus bundles over the circle with monodromy (21,11), 2002, 1–43, arXiv: math.GT/0203215

[4] R. Frigerio, B. Martelli, C. Petronio, “Complexity and Heegaard genus of an infinite class of compact 3-manifolds”, Pacific J. Math., 210 (2003), 283–297 | DOI | MR | Zbl

[5] S. V. Matveev, Algorithmic topology and classification of 3-manifolds, Springer, 2003 | MR

[6] B. Martelli, C. Petronio, “3-manifolds having complexity at most 9”, Experimental Math., 10 (2001), 207–237 | MR

[7] B. Martelli, C. Petronio, “Complexity of geometric 3-manifolds”, Geom. Dedicata, 108 (2004), 15–69 | DOI | MR | Zbl