Symmetries and solutions to equations of two-dimensional motions of polytropic gas
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 291-307
Voir la notice de l'article provenant de la source Math-Net.Ru
The optimal system of subalgebras for the $9$-dimensional Lie algebra was constructed. This system classifies invariant submodels of equation governing the motion of polytropic gas with polytrope-exponent $\gamma=2$. Invariant submodels of rank equal to 0 were found and their physical properties were described.
@article{SEMR_2005_2_a20,
author = {A. S. Pavlenko},
title = {Symmetries and solutions to equations of two-dimensional motions of polytropic gas},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {291--307},
publisher = {mathdoc},
volume = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a20/}
}
TY - JOUR AU - A. S. Pavlenko TI - Symmetries and solutions to equations of two-dimensional motions of polytropic gas JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2005 SP - 291 EP - 307 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a20/ LA - ru ID - SEMR_2005_2_a20 ER -
A. S. Pavlenko. Symmetries and solutions to equations of two-dimensional motions of polytropic gas. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 291-307. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a20/