The direct dynamical problem of seismics for horizontally stratified media
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 23-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of numerical solving the elasticity system for horizontal stratified anisotropic media is presented. The algorithm uses a relation between a system of differential equation of second order and a differential matrix Riccati equation which admits a solution in an analytical form in the each layer. The proposed numerical method differs from known methods and can be applied for horizontal stratified media of any type.
@article{SEMR_2005_2_a2,
     author = {A. L. Karchevsky},
     title = {The direct dynamical problem of seismics for horizontally stratified media},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {23--61},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a2/}
}
TY  - JOUR
AU  - A. L. Karchevsky
TI  - The direct dynamical problem of seismics for horizontally stratified media
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 23
EP  - 61
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a2/
LA  - ru
ID  - SEMR_2005_2_a2
ER  - 
%0 Journal Article
%A A. L. Karchevsky
%T The direct dynamical problem of seismics for horizontally stratified media
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 23-61
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a2/
%G ru
%F SEMR_2005_2_a2
A. L. Karchevsky. The direct dynamical problem of seismics for horizontally stratified media. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 23-61. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a2/

[1] G. V. Akkuratov, V. I. Dmitriev, “Metod rascheta polya ustanovivshikhsya uprugikh kolebanii v sloistoi srede”, Chislennye metody v geofizike, MGU, M., 1979, 3–12

[2] G. V. Akkuratov, V. I. Dmitriev, “Metod rascheta polya ustanovivshikhsya uprugikh kolebanii v sloistoi srede”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 24 (1984), 272–286 | MR | Zbl

[3] I. S. Berezin, N. P. Zhidkov, Metody vychislenii, izd. 3-e, Nauka, M., 1966

[4] L. M. Brekhovskikh, Volny v sloistykh sredakh, Nauka, M., 1973

[5] L. M. Brekhovskikh, O. A. Godin, Akustika sloistykh sred, Nauka, M., 1989

[6] F. R. Gantmakher, Teoriya matrits, izd. 4-oe, Nauka, M., 1988 | MR | Zbl

[7] I. M. Gelfand, O. V. Lokutsievskii, “Metod “progonki” dlya resheniya raznostnykh uravnenii”: S. K. Godunov, V. S. Ryabenkii, Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1962, 283–309

[8] S. K. Godunov, Matrichnaya eksponenta, matritsa Grina i usloviya Lopatinskogo, NGU, Novosibirsk, 1983 | MR

[9] V. I. Dmitriev, “Obschii metod rascheta elektromagnitnogo polya v sloistoi srede”, Vychislitelnye metody i programmirovanie, 10 (1968), 55–65

[10] V. I. Dmitriev, E. A. Fedorova, “Chislennye issledovaniya elektromagnitnykh polei v sloistykh sredakh”, Vychislitelnye metody i programmirovanie, 32 (1980), 150–183

[11] G. V. Ivanov, Yu. M. Volchkov, I. O. Bogulskii, S. A. Anisimov, V. D. Kurguzov, Chislennoe reshenie dinamicheskikh zadach uprugoplasticheskogo deformirovaniya tverdykh tel, Sibirskoe universitetskoe izdatelstvo, Novosibirsk, 2002 | MR

[12] Kh. D. Ikramov, Chislennoe reshenie matrichnykh uravnenii, Nauka, M., 1984 | MR | Zbl

[13] A. L. Karchevskii, “Chislennoe reshenie odnomernoi obratnoi zadachi dlya sistemy uprugosti”, Doklady RAN, 375 (2000), 235–238

[14] A. L. Karchevskii, A. G. Fatyanov, “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sibirskii zhurnal vychislitelnoi matematiki, 4 (2001), 259–269

[15] A. L. Karchevskii, “Chislennoe opredelenie funktsii posledeistviya sredy”, Obratnye zadachi i informatsionnye tekhnologii, 2 (2003), 53–63

[16] A. L. Karchevskii, “Metod chislennogo resheniya sistemy uprugosti dlya gorizontalno sloistoi anizotropnoi sredy”, Geologiya i geofizika, 46 (2005), 339–351

[17] E. Kurpinar, A. L. Karchevskii, “Vychislenie gradienta pri optimizatsionnom metode resheniya obratnoi dinamicheskoi zadachi seismiki dlya gorizontalno sloistoi sredy”, Geologiya i geofizika, 46 (2005), 201–209

[18] V. I. Krylov, V. V. Bobkov, P. I. Monastyrskii, Vychislitelnye metody vysshei matematiki, Vysshaya shkola, Minsk, 1972

[19] L. A. Molotkov, Matrichnyi metod v teorii rasprostraneniya voln v sloistykh uprugikh i zhidkikh sredakh, Nauka, L., 1984

[20] G. I. Petrashen, “Rasprostranenie uprugikh voln v sloistykh izotropnykh sredakh, razdelennykh parallelnymi ploskostyami”, Uchenye zapiski LGU, 162 (1952)

[21] G. I. Petrashen, “O ratsionalnom metode resheniya dlya zadachi dinamicheskoi teorii uprugosti”, Uchenye zapiski LGU, 208 (1956), 5–57

[22] G. I. Petrashen, L. A. Molotkov, P. V. Krauklis, Volny v sloistykh odnorodnykh izotropnykh sredakh, Nauka, L., 1982

[23] G. I. Petrashen, B. M. Kashtan, A. A. Kovtun, I. V. Mukhina, “Metod konturnykh integralov v sluchae transversalno-izotropnykh sred s osyu simmetrii, normalnoi granitsam razdela”, Voprosy dinamicheskoi teorii rasprostraneniya seismicheskikh voln, 24, Nauka, L., 4–91 | MR

[24] N. N. Puzyrev (red.), Poperechnye i obmennye volny v seismorazvedke, Nedra, M., 1967

[25] N. N. Puzyrev, A. V. Trigubov, L. Yu. Brodov, G. V. Vedernikov, K. A. Lebedev, I. R. Obolentseva, T. V. Nefedkina, L. N. Khudobina, B. P. Sibiryakov, T. N. Kulichikhina, G. N. Lebedeva, L. V. Korzheva, Seismicheskaya razvedka metodom poperechnykh i obmennykh voln, Nedra, M., 1985

[26] N. N. Puzyrev (red.), Mnogovolnovye seismicheskie issledovaniya, Nauka, M., 1987

[27] N. N. Puzyrev, Metody i ob'ekty seismicheskikh issledovanii, SO RAN, NITs OIGGM, Novosibirsk, 1997

[28] N. N. Puzyrev, “Nekotorye zamechaniya o putyakh razvitiya seismicheskikh metodov”, Geofizika, 6 (1999), 3–5

[29] N. N. Puzyrev, “Zarozhdenie i razvitie mnogovolnovoi seismorazvedki v Rossii. Vozbuzhdenie i registratsiya voln”, Geologiya i geofizika, 44 (2003), 277–285

[30] N. N. Puzyrev, “Zarozhdenie i razvitie mnogovolnovoi seismorazvedki v Rossii. Interpretatsiya dannykh i rezultaty”, Geologiya i geofizika, 44 (2003), 465–473

[31] Yu. V. Riznichenko, “Geometricheskaya seismika sloistykh sred”, Trudy Instituta teoreticheskoi geofiziki, 1, 1947

[32] A. N. Tikhonov, D. N. Shakhsuvarov, “Metod rascheta elektromagnitnykh polei, vozbuzhdaemykh peremennym tokom v sloistykh sredakh”, Izvestiya AN SSSR, seriya geofizicheskaya, 1956, no. 3, 251–254

[33] A. G. Fatyanov, B. G. Mikhailenko, “Metod rascheta nestatsionarnykh volnovykh polei v neuprugikh sloisto-neodnorodnykh sredakh”, Doklady AN SSSR, 301 (1988), 834–839

[34] A. G. Fatyanov, Nestatsionarnye seismicheskie volnovye polya v neodnorodnykh anizotropnnykh sredakh s pogloscheniem energii, Preprint VTs SO AN, No 857, Novosibirsk, 1989 | MR

[35] A. G. Fatyanov, “Poluanaliticheskii metod resheniya pryamykh dinamicheskikh zadach v sloistykh sredakh”, Doklady AN SSSR, 310 (1990), 323–327 | MR

[36] K. Aki, P. G. Richards, Quantitative Seismology. Theory and Methods, Freeman, San Francisco, 1980; K. Aki, P. Richards, Kolichestvennaya seismologiya. Teoriya i metody, Mir, M., 1983

[37] A. Ben-Menahem, S. J. Singh, Seismic Waves and Sources, Springer-Verlag, New York, 1981 | Zbl

[38] F. L. Hitchcock, “Finding complex roots of algebraic equations”, Journal of Mathematical Physics, 17 (1938), 55–58

[39] F. L. Hitchcock, “Algebraic equations with comlex coefficients”, Journal of Mathematical Physics, 18 (1939), 202–210 | MR

[40] F. L. Hitchcock, “An improvement on the G.C.D. method for comlex roots”, Journal of Mathematical Physics, 23 (1944), 69–74 | MR | Zbl

[41] E. Kamke, Diffrentiatialgleichungen Lösungsmenthoden und Lösungen. I. Gewöhnliche Diffrentiatialgleichungen, 6, Verbesserte Auflage, Leipzig, 1959; E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR

[42] A. L. Karchevsky, “Numerical solution of the inverse problem for the system of elasticity for verticaly inhomogeneous medium”, Bulletin of the Novosibirsk Computing Center, Mathemetical Modeling in Geophysics, 5 (1999), 63–69 | Zbl

[43] A. L. Karchevsky, “Several remarks on numerical solution of the one-dimensional coefficient inverse problem”, Journal of Inverse and Ill-Posed Problems, 10 (2002), 361–384 | MR

[44] A. L. Karchevsky, “The analytical formulas for the gradient of the residual functional for the coefficient inverse problem for the elasticity system”, Journal of Inverse and Ill-Posed Problems, 11 (2003), 619–629 | DOI | MR | Zbl

[45] V. Nowacki, Teoria sprȩżystości, Państowowe Wydawnictwo Naukowe, Warszawa, 1970; V. Novatskii, Teoriya uprugosti, Mir, M., 1975 | MR

[46] E. Somersalo, M. Cheney, D. Isaacson, E. Isaacson, “Layer stripping: a direct numerical method for impedance imaging”, Inverse Problems, 7 (1991), 899–926 | DOI | MR | Zbl

[47] G. Strang, Linear algebra and its applications, Massachusetts Institute of Technology, Academic Press, New York, San Francisco, London, 1976 ; G. Streng, Lineinaya algebra i ee primeneniya, Mir, M., 1980 | MR | Zbl | MR

[48] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965 ; Uilkinson Dzh. Kh., Algebraicheskaya problema sobstvennykh znachenii, Nauka, M., 1970 | MR | Zbl