$\overline\partial$-closed extension of $CR$-forms with singularities on a~generic manifold
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 264-290

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a smooth generic manifold with nonzero Levi form in a domain of holomorphy $\Omega\subset\mathbb C^n$, $n>1$. Let $\Omega_\Gamma\subset\Omega$ be the domain adjacent to $\Gamma$ to which all $CR$-forms defined on $\Gamma$ extend $\overline\partial$-closely. Let $K=\widehat K_\Omega\subset\Omega$ be a holomorphically convex compact set. We show that every $CR$-form on $\Gamma\setminus K$ of bidegree $(l,r)$ with coefficients in $C^1(\Gamma\setminus K)$ extends $\overline\partial$-closely to $\Omega_\Gamma\setminus K$. When $n=2$ and $r=0$ the manifold $\Gamma$ must be closed $(\partial\Gamma=0)$. The proof uses an integral representation, obtained from the integral representation of Airapetyan and Khenkin, in which the integration is carried out over the $CR$-manifold $\Gamma$ only (but not over its complement). In this paper we also consider the problem of $\overline\partial$-closed continuation of $CR$-forms given on $\Gamma\setminus K$, where $\Gamma$ is a generic manifold with nondegenerate Levi form, and $K$ is a meromorphically $p$-convex compactum. We derive some conditions on $\Gamma$, relative to $p$-convexity and $q$-concavity, under which every $CR$-form with smooth coefficients given on $\Gamma\setminus K$ extends $\overline\partial$-closely in some domain $\Omega_\Gamma\setminus K$, where $\Omega_\Gamma$ is a wedge domain with edge $\Gamma$. Our results are local.
@article{SEMR_2005_2_a19,
     author = {T. N. Nikitina},
     title = {$\overline\partial$-closed extension of $CR$-forms with singularities on a~generic manifold},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {264--290},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a19/}
}
TY  - JOUR
AU  - T. N. Nikitina
TI  - $\overline\partial$-closed extension of $CR$-forms with singularities on a~generic manifold
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 264
EP  - 290
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a19/
LA  - ru
ID  - SEMR_2005_2_a19
ER  - 
%0 Journal Article
%A T. N. Nikitina
%T $\overline\partial$-closed extension of $CR$-forms with singularities on a~generic manifold
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 264-290
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a19/
%G ru
%F SEMR_2005_2_a19
T. N. Nikitina. $\overline\partial$-closed extension of $CR$-forms with singularities on a~generic manifold. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 264-290. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a19/