Some results and conjectures on finite groups acting on homology spheres
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 233-238
Voir la notice de l'article provenant de la source Math-Net.Ru
This is a note based on a talk given in the Workshop on geometry and topology of $3$-manifolds, Novosibirsk, 22–26 August 2005. We consider the class of finite groups, which admit arbitrary, i.e. not necessarily free actions on integer and $\bmod2$ homology spheres, with an emphasis on the $3$- and $4$-dimensional cases. We recall some classical results and present some recent progress as well as new results, open problems and the emerging conjectural picture of the situation.
@article{SEMR_2005_2_a16,
author = {B. P. Zimmermann},
title = {Some results and conjectures on finite groups acting on homology spheres},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {233--238},
publisher = {mathdoc},
volume = {2},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a16/}
}
B. P. Zimmermann. Some results and conjectures on finite groups acting on homology spheres. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 233-238. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a16/