Colouring lattice points by real numbers
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 230-232
Cet article a éte moissonné depuis la source Math-Net.Ru
We establish a criterion for the existence of an $f$-colouring with a finite span of the $d$-dimensional lattice graph $\mathbb Z^d$.
@article{SEMR_2005_2_a15,
author = {D. G. Fon-Der-Flaass},
title = {Colouring lattice points by real numbers},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {230--232},
year = {2005},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a15/}
}
D. G. Fon-Der-Flaass. Colouring lattice points by real numbers. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 230-232. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a15/
[1] N. L. Biggs, Integer Programming Techniques for the Frequency Assignment Problem: Results and Prospects, CDAM Research Report Series LSE-CDAM-97-06, 1998, 4 pp.
[2] D. G. Fon-Der-Flaass, RTO Proceedings 13: Frequency assignment, Sharing and Conservation in Systems (Aerospace), Papers presented at the IST Symposium Aalborg, Denmark, 5–7 October 1998, 6-1–6-4