Embedding arbitrary graphs into strongly regular and distance regular graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 218-221
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that every simple graph on x vertices is an induced subgraph of some strongly regular graph on fewer than $4x^2$ vertices; which, up to a constant factor, coincides with the existing lower bound. We also show that every simple graph on $x$ vertices is an induced subgraph of some distance regular graph of diameter $3$ on fewer than $8x^3$ vertices, and every simple bipartite graph on $x$ vertices is an induced subgraph of some distance regular bipartite graph of diameter $3$ on fewer than $8x^2$ vertices.
@article{SEMR_2005_2_a13,
author = {D. G. Fon-Der-Flaass},
title = {Embedding arbitrary graphs into strongly regular and distance regular graphs},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {218--221},
publisher = {mathdoc},
volume = {2},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a13/}
}
TY - JOUR AU - D. G. Fon-Der-Flaass TI - Embedding arbitrary graphs into strongly regular and distance regular graphs JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2005 SP - 218 EP - 221 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a13/ LA - en ID - SEMR_2005_2_a13 ER -
D. G. Fon-Der-Flaass. Embedding arbitrary graphs into strongly regular and distance regular graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 218-221. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a13/