Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2004_1_a7, author = {A. N. Rybalov}, title = {Relativizations of the $P=NP$ problem over the complex number field}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {91--98}, publisher = {mathdoc}, volume = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a7/} }
A. N. Rybalov. Relativizations of the $P=NP$ problem over the complex number field. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 91-98. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a7/
[1] I.V. Ashaev, V.Ya.Belyaev, A.G. Myasnikov, “Podkhody k teorii obobschennoi vychislimosti”, Algebra i logika, 32:4 (1993), 349–386 | MR | Zbl
[2] A.N. Rybalov, “Slozhnost vychislenii v algebraicheskikh sistemakh”, Sibirskii matematicheskii zhurnal, 45:6 (2004), 1365–1377 | MR | Zbl
[3] L. Blum, M. Shub, S. Smale, “On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines”, Bull. Amer. Math. Soc., 21 (1989), 1–46 | DOI | MR | Zbl
[4] T. Baker, J. Gill, R. Solovay, “Relativizations of the P=?NP question”, SIAM Journal on Computing, 4 (1975), 431–442 | DOI | MR | Zbl
[5] F. Cucker, M. Matamala, “On digital nondeterminism”, Math. Syst. Theory, 29 (1996), 635–647 | MR | Zbl
[6] T. Emerson, “Relativization of the P=?NP question over the reals (and other ordered rings)”, Theoretical Computer Science, 133 (1994), 15–22 | DOI | MR | Zbl
[7] A. Hemmerling, “Computability and complexity over structures”, Math. Logic Quarterly, 44:1 (1998), 1–44 | DOI | MR | Zbl