A characterization of quasivarieties of partial algebras by means of limits and products
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 35-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a class of partial algebras is a quasivariety if and only if it is closed under surjective direct limits and subdirect products.
@article{SEMR_2004_1_a2,
     author = {M. S. Sheremet},
     title = {A characterization of quasivarieties of partial algebras by means of limits and products},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {35--37},
     publisher = {mathdoc},
     volume = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a2/}
}
TY  - JOUR
AU  - M. S. Sheremet
TI  - A characterization of quasivarieties of partial algebras by means of limits and products
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2004
SP  - 35
EP  - 37
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2004_1_a2/
LA  - ru
ID  - SEMR_2004_1_a2
ER  - 
%0 Journal Article
%A M. S. Sheremet
%T A characterization of quasivarieties of partial algebras by means of limits and products
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2004
%P 35-37
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2004_1_a2/
%G ru
%F SEMR_2004_1_a2
M. S. Sheremet. A characterization of quasivarieties of partial algebras by means of limits and products. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 35-37. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a2/

[1] V. A. Gorbunov, V. I. Tumanov, “Stroenie reshetok kvazimnogoobrazii”, Trudy In-ta matem. SO AN SSSR, 2, 1982, 12–44 | Zbl

[2] V. A. Gorbunov, M. S. Sheremet, “Khornovy klassy predikatnykh sistem i mnogoobraziya chastichnykh algebr”, Algebra i logika, 39:1 (2000), 23–46 | MR | Zbl

[3] S. R. Kogalovskii, “K teoreme Birkgofa”, Uspekhi matem. nauk, 20:5 (1965), 206–207 | MR | Zbl

[4] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970

[5] P. Burmeister, A model-theoretic oriented approach to partial algebras, Part I, Academie-Verlag, Berlin, 1986 | MR