A characterization of quasivarieties of partial algebras by means of limits and products
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 35-37
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that a class of partial algebras is a quasivariety if and only if it is closed under surjective direct limits and subdirect products.
@article{SEMR_2004_1_a2,
author = {M. S. Sheremet},
title = {A characterization of quasivarieties of partial algebras by means of limits and products},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {35--37},
publisher = {mathdoc},
volume = {1},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a2/}
}
TY - JOUR AU - M. S. Sheremet TI - A characterization of quasivarieties of partial algebras by means of limits and products JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2004 SP - 35 EP - 37 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2004_1_a2/ LA - ru ID - SEMR_2004_1_a2 ER -
M. S. Sheremet. A characterization of quasivarieties of partial algebras by means of limits and products. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 35-37. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a2/