Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2004_1_a2, author = {M. S. Sheremet}, title = {A characterization of quasivarieties of partial algebras by means of limits and products}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {35--37}, publisher = {mathdoc}, volume = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a2/} }
TY - JOUR AU - M. S. Sheremet TI - A characterization of quasivarieties of partial algebras by means of limits and products JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2004 SP - 35 EP - 37 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2004_1_a2/ LA - ru ID - SEMR_2004_1_a2 ER -
M. S. Sheremet. A characterization of quasivarieties of partial algebras by means of limits and products. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 35-37. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a2/
[1] V. A. Gorbunov, V. I. Tumanov, “Stroenie reshetok kvazimnogoobrazii”, Trudy In-ta matem. SO AN SSSR, 2, 1982, 12–44 | Zbl
[2] V. A. Gorbunov, M. S. Sheremet, “Khornovy klassy predikatnykh sistem i mnogoobraziya chastichnykh algebr”, Algebra i logika, 39:1 (2000), 23–46 | MR | Zbl
[3] S. R. Kogalovskii, “K teoreme Birkgofa”, Uspekhi matem. nauk, 20:5 (1965), 206–207 | MR | Zbl
[4] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970
[5] P. Burmeister, A model-theoretic oriented approach to partial algebras, Part I, Academie-Verlag, Berlin, 1986 | MR