A characterization of quasivarieties of partial algebras by means of limits and products
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 35-37
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that a class of partial algebras is a quasivariety if and only if it is closed under surjective direct limits and subdirect products.
@article{SEMR_2004_1_a2,
author = {M. S. Sheremet},
title = {A characterization of quasivarieties of partial algebras by means of limits and products},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {35--37},
year = {2004},
volume = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a2/}
}
M. S. Sheremet. A characterization of quasivarieties of partial algebras by means of limits and products. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 35-37. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a2/
[1] V. A. Gorbunov, V. I. Tumanov, “Stroenie reshetok kvazimnogoobrazii”, Trudy In-ta matem. SO AN SSSR, 2, 1982, 12–44 | Zbl
[2] V. A. Gorbunov, M. S. Sheremet, “Khornovy klassy predikatnykh sistem i mnogoobraziya chastichnykh algebr”, Algebra i logika, 39:1 (2000), 23–46 | MR | Zbl
[3] S. R. Kogalovskii, “K teoreme Birkgofa”, Uspekhi matem. nauk, 20:5 (1965), 206–207 | MR | Zbl
[4] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970
[5] P. Burmeister, A model-theoretic oriented approach to partial algebras, Part I, Academie-Verlag, Berlin, 1986 | MR