Abstract class field theory (formatting modules)
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 1-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SEMR_2004_1_a0,
     author = {Yu. L. Ershov},
     title = {Abstract class field theory (formatting modules)},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a0/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Abstract class field theory (formatting modules)
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2004
SP  - 1
EP  - 23
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2004_1_a0/
LA  - ru
ID  - SEMR_2004_1_a0
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Abstract class field theory (formatting modules)
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2004
%P 1-23
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2004_1_a0/
%G ru
%F SEMR_2004_1_a0
Yu. L. Ershov. Abstract class field theory (formatting modules). Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 1-23. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a0/

[1] J. Neukirch, “Abstract Class Field Theory, chapter IV”, Algebraic Number Theory, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1999 | Zbl

[2] Yu. L. Ershov, “Abstraktnaya teoriya polei klassov (finitarnyi podkhod)”, Matematicheskii sbornik, 194:2 (2003), 37–60 | MR | Zbl

[3] K. Ivasava, Lokalnaya teoriya polei klassov, Mir, Moskva, 1983

[4] Algebraicheskaya teoriya chisel, ed. Dzh. Kassels, A. Frelikh, Mir, Moskva, 1969

[5] W. C. Waterhouse, “Profinite groups are Galois groups”, Proc. Am. Math. Soc., 42:2 (1974), 639–640 | DOI | MR | Zbl

[6] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, Fizmatgiz, Moskva, 1987