Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2004_1_a0, author = {Yu. L. Ershov}, title = {Abstract class field theory (formatting modules)}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1--23}, publisher = {mathdoc}, volume = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a0/} }
Yu. L. Ershov. Abstract class field theory (formatting modules). Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 1-23. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a0/
[1] J. Neukirch, “Abstract Class Field Theory, chapter IV”, Algebraic Number Theory, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1999 | Zbl
[2] Yu. L. Ershov, “Abstraktnaya teoriya polei klassov (finitarnyi podkhod)”, Matematicheskii sbornik, 194:2 (2003), 37–60 | MR | Zbl
[3] K. Ivasava, Lokalnaya teoriya polei klassov, Mir, Moskva, 1983
[4] Algebraicheskaya teoriya chisel, ed. Dzh. Kassels, A. Frelikh, Mir, Moskva, 1969
[5] W. C. Waterhouse, “Profinite groups are Galois groups”, Proc. Am. Math. Soc., 42:2 (1974), 639–640 | DOI | MR | Zbl
[6] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, Fizmatgiz, Moskva, 1987