Voir la notice de l'acte provenant de la source Numdam
@article{SEDP_2006-2007____A3_0, author = {C\^ote, Rapha\"el}, title = {Construction de solutions pour les \'equations de {Korteweg-de} {Vries} g\'en\'eralis\'ees}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:3}, pages = {1--17}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2006-2007}, mrnumber = {2385190}, language = {fr}, url = {http://geodesic.mathdoc.fr/item/SEDP_2006-2007____A3_0/} }
TY - JOUR AU - Côte, Raphaël TI - Construction de solutions pour les équations de Korteweg-de Vries généralisées JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:3 PY - 2006-2007 SP - 1 EP - 17 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://geodesic.mathdoc.fr/item/SEDP_2006-2007____A3_0/ LA - fr ID - SEDP_2006-2007____A3_0 ER -
%0 Journal Article %A Côte, Raphaël %T Construction de solutions pour les équations de Korteweg-de Vries généralisées %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:3 %D 2006-2007 %P 1-17 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://geodesic.mathdoc.fr/item/SEDP_2006-2007____A3_0/ %G fr %F SEDP_2006-2007____A3_0
Côte, Raphaël. Construction de solutions pour les équations de Korteweg-de Vries généralisées. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2006-2007), Exposé no. 3, 17 p. http://geodesic.mathdoc.fr/item/SEDP_2006-2007____A3_0/
[1] Michael Christ and Michael I. Weinstein, Dispersion of small amplitudes solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal. 100 (1991), 87–109. | Zbl | MR
[2] Raphaël Côte, Construction of solutions to the -critical KdV equation with a given asymptotic behaviour, Duke Math. J., to appear. | Zbl | MR
[3] —, Construction of solutions to the subcritical gKdV equations with a given asymptotical behaviour, J. Funct. Anal. (2006), no. 241, 143–211. | Zbl | MR
[4] —, Large data wave operator for the generalized Korteweg-de Vries equations, Differential Integral Equations 19 (2006), no. 2, 163–188. | MR
[5] Wiktor Eckhaus and Peter Schuur, The emergence of solutions of the Korteweg-de Vries equation form arbitrary initial conditions, Math. Methods Appl. Sci. 5 (1983), 97–116. | Zbl | MR
[6] Nakao Hayashi and Pavel I. Naumkin, Large time asymptotics of solutions to the generalized Korteweg-De Vries equation, J. Funct. Anal. 159 (1998), 110–136. | Zbl | MR
[7] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness and scattering result for the generalized Korteweg-De Vries equation via contraction principle, Comm. Pure Appl. Math. 46 (1993), 527–620. | Zbl | MR
[8] —, On the concentration of blow up solutions for the generalized KdV equation critical in , Nonlinear wave equations (Providence, RI, 1998), Contemp. Math., vol. 263, Amer. Math. Soc., Providence, RI, 2000, pp. 131–156. | Zbl | MR
[9] Yvan Martel, Asymptotic -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math. 127 (2005), no. 5, 1103–1140. | Zbl | MR
[10] Yvan Martel and Frank Merle, A Liouville theorem for the critical generalized Korteweg-de Vries equation, J. Math. Pures Appl. (9) 79 (2000), 339–425. | Zbl | MR
[11] —, Asymptotic stability of solitons for subcritical generalized KdV equations., Arch. Ration. Mech. Anal. 157 (2001), no. 3, 219–254. | Zbl | MR
[12] —, Blow up in finite time and dynamics of blow up solutions for the -critical generalized KdV equations, J. Amer. Math. Soc. 15 (2002), 617–664. | Zbl | MR
[13] —, Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized kdv equation, Ann. of Math. (2) 1 (2002), 235–280. | Zbl | MR
[14] Yvan Martel, Frank Merle, and Tai-Peng Tsai, Stability and asymptotic stability in the energy space of the sum of solitons for subcritical gKdV equations, Comm. Math. Phys. 231 (2002), 347–373. | Zbl | MR
[15] Frank Merle, Existence of blow-up solutions in the energy space for the critical generalized Korteweg-de Vries equation, J. Amer. Math. Soc. 14 (2001), 555–578. | Zbl | MR
[16] Robert M. Miura, The Korteweg-de Vries equation : a survey of results, SIAM Rev. 18 (1976), 412–459. | Zbl | MR
[17] Gustavo Ponce and Luis Vega, Nonlinear small data scattering for the generalized Korteweg-de Vries equation, J. Funct. Anal. 90 (1990), 445–457. | Zbl | MR
[18] Mohammed A. Rammaha, On the asymptotic behavior of solutions of generalized Korteweg-de Vries equation, J. Math. Anal. Appl. 140 (1989), no. 1, 228–240. | Zbl | MR
[19] Peter Cornelis Schuur, Asymptotic analysis of soliton problems, Lecture Notes in Mathematics, vol. 1232, Springer-Verlag, Berlin, 1986, An inverse scattering approach. | Zbl | MR
[20] Walter A. Strauss, Dispersion of low-energy waves for two conservative equations, Arch. Ration. Mech. Anal. 55 (1974), 86–92. | Zbl | MR