Controllability of three-dimensional Navier–Stokes equations and applications
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2005-2006), Exposé no. 6, 7 p.

Voir la notice de l'acte provenant de la source Numdam

We formulate two results on controllability properties of the 3D Navier–Stokes (NS) system. They concern the approximate controllability and exact controllability in finite-dimensional projections of the problem in question. As a consequence, we obtain the existence of a strong solution of the Cauchy problem for the 3D NS system with an arbitrary initial function and a large class of right-hand sides. We also discuss some qualitative properties of admissible weak solutions for randomly forced NS equations.

Classification : 35Q30, 60H15, 76D05, 93B05, 93C20
Keywords: Approximate controllability, exact controllability in projections, 3D Navier–Stokes system, Agrachev–Sarychev method, stationary solutions, irreducibility.
@article{SEDP_2005-2006____A6_0,
     author = {Shirikyan, Armen},
     title = {Controllability of three-dimensional {Navier{\textendash}Stokes} equations and applications},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:6},
     pages = {1--7},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2005-2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEDP_2005-2006____A6_0/}
}
TY  - JOUR
AU  - Shirikyan, Armen
TI  - Controllability of three-dimensional Navier–Stokes equations and applications
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:6
PY  - 2005-2006
SP  - 1
EP  - 7
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://geodesic.mathdoc.fr/item/SEDP_2005-2006____A6_0/
LA  - en
ID  - SEDP_2005-2006____A6_0
ER  - 
%0 Journal Article
%A Shirikyan, Armen
%T Controllability of three-dimensional Navier–Stokes equations and applications
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:6
%D 2005-2006
%P 1-7
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://geodesic.mathdoc.fr/item/SEDP_2005-2006____A6_0/
%G en
%F SEDP_2005-2006____A6_0
Shirikyan, Armen. Controllability of three-dimensional Navier–Stokes equations and applications. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2005-2006), Exposé no. 6, 7 p. http://geodesic.mathdoc.fr/item/SEDP_2005-2006____A6_0/

[AKSS06] A. Agrachev, S. Kuksin, A. Sarychev, and A. Shirikyan, On finite-dimensional projections of distributions for solutions of randomly forced PDE’s, Preprint (2006). | MR

[AS05] A. A. Agrachev and A. V. Sarychev, Navier–Stokes equations: controllability by means of low modes forcing, J. Math. Fluid Mech. 7 (2005), 108–152. | Zbl | MR

[AS06] A. A. Agrachev and A. V. Sarychev, Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing, Commun. Math. Phys. (2006), to appear. | Zbl | MR

[FG95] F. Flandoli and D. Gątarek, Martingale and stationary solutions for stochastic Navier–Stokes equations, Probab. Theory Related Fields 102 (1995), no. 3, 367–391. | Zbl | MR

[Shi06a] A. Shirikyan, Approximate controllability of three-dimensional Navier–Stokes equations, Commun. Math. Phys. (2006), to appear. | Zbl | MR

[Shi06b] A. Shirikyan, Exact controllability in projections for three-dimensional Navier–Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire (2006), to appear. | mathdoc-id | Zbl | MR | EuDML

[Shi06c] A. Shirikyan, Qualitative properties of stationary measures for three-dimensional Navier–Stokes equations, in preparation (2006). | MR

[Tem79] R. Temam, Navier–Stokes Equations, North-Holland, Amsterdam, 1979. | Zbl | MR

[VF88] M. I. Vishik and A. V. Fursikov, Mathematical Problems in Statistical Hydromechanics, Kluwer, Dordrecht, 1988. | Zbl | MR