Voir la notice de l'acte provenant de la source Numdam
@article{SEDP_2004-2005____A4_0, author = {Zworski, Maciej}, title = {Fractal {Weyl} laws for quantum resonances}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:4}, pages = {1--27}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2004-2005}, mrnumber = {2182049}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEDP_2004-2005____A4_0/} }
TY - JOUR AU - Zworski, Maciej TI - Fractal Weyl laws for quantum resonances JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:4 PY - 2004-2005 SP - 1 EP - 27 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://geodesic.mathdoc.fr/item/SEDP_2004-2005____A4_0/ LA - en ID - SEDP_2004-2005____A4_0 ER -
%0 Journal Article %A Zworski, Maciej %T Fractal Weyl laws for quantum resonances %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:4 %D 2004-2005 %P 1-27 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://geodesic.mathdoc.fr/item/SEDP_2004-2005____A4_0/ %G en %F SEDP_2004-2005____A4_0
Zworski, Maciej. Fractal Weyl laws for quantum resonances. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2004-2005), Exposé no. 4, 27 p. http://geodesic.mathdoc.fr/item/SEDP_2004-2005____A4_0/
[1] E. Bogomolny, Spectral statistics, in Proc. Int. Congress of Mathematicians (Doc. Math. Extra vol. 3) 99–108, Springer Verlag, Berlin, 1998. | Zbl | MR
[2] J.-M. Bony and J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. math. France, 122(1994), 77-118. | Zbl | MR | mathdoc-id
[3] H. Christianson, Growth and zeros of the zeta function for hyperbolic rational maps, to appear in Can. J. Math. | Zbl | MR
[4] M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the semiclassical limit, Cambridge University Press, 1999. | Zbl | MR
[5] C. Gérard and J. Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys. 108(1987), 391-421. | Zbl | MR
[6] L. Guillopé, K. Lin, and M. Zworski, The Selberg zeta function for convex co-compact Schottky groups, Comm. Math. Phys, 245(2004), 149 - 176. | Zbl | MR
[7] V. Ivrii, Microlocal Analysis and Precise Spectral Asymptotics, Springer Verlag, 1998. | Zbl | MR
[8] K. Lin, Numerical study of quantum resonances in chaotic scattering, J. Comp. Phys. 176(2002), 295-329. | Zbl | MR
[9] K. Lin and M. Zworski, Quantum resonances in chaotic scattering, Chem. Phys. Lett. 355(2002), 201-205.
[10] W. Lu, S. Sridhar, and M. Zworski, Fractal Weyl laws for chaotic open systems, Phys. Rev. Lett. 91(2003), 154101.
[11] R.B. Melrose, Polynomial bounds on the number of scattering poles, J. Funct. Anal. 53(1983), 287-303. | Zbl | MR
[12] R.B. Melrose, Polynomial bounds on the distribution of poles in scattering by an obstacle, Journeés “Equations aux dériveés Partielles”, Saint-Jean-des-Monts, 1984. | Zbl | mathdoc-id
[13] T. Morita, Periodic orbits of a dynamical system in a compound central field and a perturbed billiards system. Ergodic Theory Dynam. Systems 14(1994), 599–619. | Zbl | MR
[14] S. Nonnenmacher and M. Zworski, Distribution of resonances for open quantum maps, preprint 2005, math-ph/0505034. | Zbl | MR
[15] H. Schomerus and J. Tworzydło, Quantum-to-classical crossover of quasi-bound states in open quantum systems, Phys. Rev. Lett. 93(2004), 154102.
[16] J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J., 60(1990), 1–57. | Zbl | MR
[17] J. Sjöstrand and M. Zworski, Quantum monodromy and semiclassical trace formulae, J. Math. Pure Appl. 81(2002), 1–33. | Zbl | MR
[18] J. Sjöstrand and M. Zworski, Fractal upper bounds for the density of semiclassical resonances, preprint 2005, www.math.berkeley.edu/zworski. | Zbl | MR
[19] P. Stefanov, Approximating resonances with the complex absorbing potential method, preprint 2004, math-ph/0409020, to appear in Comm. P.D.E. | Zbl | MR
[20] J. Strain and M. Zworski, Growth of the zeta function for a quadratic map and the dimension of the Julia set, Nonlinearity, 17(2004), 1607-1622. | Zbl | MR
[21] M. Zworski, Distribution of poles for scattering on the real line, J. Funct. Anal. 73(1987), 277-296. | Zbl | MR
[22] M. Zworski, Sharp polynomial bounds on the distribution of scattering poles, Duke Math. J. 59(1989), 311-323. | Zbl | MR
[23] M. Zworski, Dimension of the limit set and the density of resonances for convex co-compact Riemann surfaces, Inv. Math. 136(1999), 353-409. | Zbl | MR