Voir la notice de l'acte provenant de la source Numdam
In this talk we describe the propagation of and Sobolev singularities for the wave equation on manifolds with corners equipped with a Riemannian metric . That is, for , , and solving with homogeneous Dirichlet or Neumann boundary conditions, we show that is a union of maximally extended generalized broken bicharacteristics. This result is a counterpart of Lebeau’s results for the propagation of analytic singularities on real analytic manifolds with appropriately stratified boundary, [7]. Our methods rely on b-microlocal positive commutator estimates, thus providing a new proof for the propagation of singularities at hyperbolic points even if has a smooth boundary (and no corners).
These notes are a summary of [17], where the detailed proofs appear.
@article{SEDP_2004-2005____A20_0, author = {Vasy, Andr\'as}, title = {Propagation of singularities for the wave equation on manifolds with corners}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:20}, pages = {1--16}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2004-2005}, mrnumber = {2182064}, language = {fr}, url = {http://geodesic.mathdoc.fr/item/SEDP_2004-2005____A20_0/} }
TY - JOUR AU - Vasy, András TI - Propagation of singularities for the wave equation on manifolds with corners JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:20 PY - 2004-2005 SP - 1 EP - 16 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://geodesic.mathdoc.fr/item/SEDP_2004-2005____A20_0/ LA - fr ID - SEDP_2004-2005____A20_0 ER -
%0 Journal Article %A Vasy, András %T Propagation of singularities for the wave equation on manifolds with corners %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:20 %D 2004-2005 %P 1-16 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://geodesic.mathdoc.fr/item/SEDP_2004-2005____A20_0/ %G fr %F SEDP_2004-2005____A20_0
Vasy, András. Propagation of singularities for the wave equation on manifolds with corners. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2004-2005), Exposé no. 20, 16 p. http://geodesic.mathdoc.fr/item/SEDP_2004-2005____A20_0/
[1] J. Cheeger and M. Taylor. Diffraction by conical singularities, I, II. Comm. Pure Applied Math., 35 :275–331, 487–529, 1982. | Zbl
[2] J. J. Duistermaat and L. Hörmander. Fourier integral operators, II. Acta Mathematica, 128 :183–269, 1972. | Zbl | MR
[3] A. Hassell, R. B. Melrose, and A. Vasy. Scattering for symbolic potentials of order zero and microlocal propagation near radial points. Preprint, 2005.
[4] A. Hassell, R. B. Melrose, and A. Vasy. Spectral and scattering theory for symbolic potentials of order zero. In Séminaire : Équations aux Dérivées Partielles, 2000–2001, Sémin. Équ. Dériv. Partielles, pages Exp. No. XIII, 21. École Polytech., Palaiseau, 2001. | Zbl | MR | mathdoc-id
[5] L. Hörmander. Fourier integral operators, I. Acta Mathematica, 127 :79–183, 1971. | Zbl | MR
[6] L. Hörmander. The analysis of linear partial differential operators, vol. 1-4. Springer-Verlag, 1983.
[7] G. Lebeau. Propagation des ondes dans les variétés à coins. Ann. Scient. Éc. Norm. Sup., 30 :429–497, 1997. | Zbl | MR | mathdoc-id
[8] R. B. Melrose and J. Sjöstrand. Singularities of boundary value problems. I. Comm. Pure Appl. Math, 31 :593–617, 1978. | Zbl | MR
[9] R. B. Melrose and J. Sjöstrand. Singularities of boundary value problems. II. Comm. Pure Appl. Math, 35 :129–168, 1982. | Zbl | MR
[10] R. B. Melrose, A. Vasy, and J. Wunsch. Propagation of singularities for the wave equation on manifolds with edges. In preparation.
[11] R. B. Melrose and J. Wunsch. Propagation of singularities for the wave equation on conic manifolds. Invent. Math., 156(2) :235–299, 2004. | Zbl | MR
[12] R. B. Melrose. Transformation of boundary problems. Acta Math., 147(3-4) :149–236, 1981. | Zbl | MR
[13] R. B. Melrose and P. Piazza. Analytic -theory on manifolds with corners. Adv. Math., 92(1) :1–26, 1992. | Zbl | MR
[14] M. Mitrea, M. Taylor, and A. Vasy. Lipschitz domains, domains with corners and the Hodge Laplacian. Preprint, 2004. | MR
[15] A. Vasy. Propagation of singularities in many-body scattering. Ann. Sci. École Norm. Sup. (4), 34 :313–402, 2001. | Zbl | MR | mathdoc-id
[16] A. Vasy. Propagation of singularities in many-body scattering in the presence of bound states. J. Func. Anal., 184 :177–272, 2001. | Zbl | MR
[17] A. Vasy. Propagation of singularities for the wave equation on manifolds with corners. Preprint, 2004.