The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in L 2
Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz") (1973-1974), Exposé no. 20, 15 p.

Voir la notice de l'acte provenant de la source Numdam

@article{SAF_1973-1974____A22_0,
     author = {Ovsepian, R. I. and Pe{\l}czy\'nski, A.},
     title = {The existence in every separable {Banach} space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in $L^2$},
     journal = {S\'eminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz")},
     note = {talk:20},
     pages = {1--15},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1973-1974},
     zbl = {0302.46008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SAF_1973-1974____A22_0/}
}
TY  - JOUR
AU  - Ovsepian, R. I.
AU  - Pełczyński, A.
TI  - The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in $L^2$
JO  - Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz")
N1  - talk:20
PY  - 1973-1974
SP  - 1
EP  - 15
PB  - Ecole Polytechnique, Centre de Mathématiques
UR  - http://geodesic.mathdoc.fr/item/SAF_1973-1974____A22_0/
LA  - en
ID  - SAF_1973-1974____A22_0
ER  - 
%0 Journal Article
%A Ovsepian, R. I.
%A Pełczyński, A.
%T The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in $L^2$
%J Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz")
%Z talk:20
%D 1973-1974
%P 1-15
%I Ecole Polytechnique, Centre de Mathématiques
%U http://geodesic.mathdoc.fr/item/SAF_1973-1974____A22_0/
%G en
%F SAF_1973-1974____A22_0
Ovsepian, R. I.; Pełczyński, A. The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in $L^2$. Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz") (1973-1974), Exposé no. 20, 15 p.. http://geodesic.mathdoc.fr/item/SAF_1973-1974____A22_0/