The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in
Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz") (1973-1974), Exposé no. 20, 15 p.
Cet article a éte moissonné depuis la source Numdam
@article{SAF_1973-1974____A22_0,
author = {Ovsepian, R. I. and Pe{\l}czy\'nski, A.},
title = {The existence in every separable {Banach} space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in $L^2$},
journal = {S\'eminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz")},
note = {talk:20},
pages = {1--15},
year = {1973-1974},
publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
zbl = {0302.46008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SAF_1973-1974____A22_0/}
}
TY - JOUR AU - Ovsepian, R. I. AU - Pełczyński, A. TI - The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in $L^2$ JO - Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz") N1 - talk:20 PY - 1973-1974 SP - 1 EP - 15 PB - Ecole Polytechnique, Centre de Mathématiques UR - http://geodesic.mathdoc.fr/item/SAF_1973-1974____A22_0/ LA - en ID - SAF_1973-1974____A22_0 ER -
%0 Journal Article %A Ovsepian, R. I. %A Pełczyński, A. %T The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in $L^2$ %J Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz") %Z talk:20 %D 1973-1974 %P 1-15 %I Ecole Polytechnique, Centre de Mathématiques %U http://geodesic.mathdoc.fr/item/SAF_1973-1974____A22_0/ %G en %F SAF_1973-1974____A22_0
Ovsepian, R. I.; Pełczyński, A. The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in $L^2$. Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz") (1973-1974), Exposé no. 20, 15 p.. http://geodesic.mathdoc.fr/item/SAF_1973-1974____A22_0/