Tolerance bounds for Weibull regression models
Statistique et analyse des données, Tome 16 (1991) no. 1, pp. 43-54.

Voir la notice de l'article provenant de la source Numdam

@article{SAD_1991__16_1_43_0,
     author = {Limam, Mohamed M. T.},
     title = {Tolerance bounds for {Weibull} regression models},
     journal = {Statistique et analyse des donn\'ees},
     pages = {43--54},
     publisher = {Association pour la statistique et ses illustrations},
     volume = {16},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SAD_1991__16_1_43_0/}
}
TY  - JOUR
AU  - Limam, Mohamed M. T.
TI  - Tolerance bounds for Weibull regression models
JO  - Statistique et analyse des données
PY  - 1991
SP  - 43
EP  - 54
VL  - 16
IS  - 1
PB  - Association pour la statistique et ses illustrations
UR  - http://geodesic.mathdoc.fr/item/SAD_1991__16_1_43_0/
LA  - en
ID  - SAD_1991__16_1_43_0
ER  - 
%0 Journal Article
%A Limam, Mohamed M. T.
%T Tolerance bounds for Weibull regression models
%J Statistique et analyse des données
%D 1991
%P 43-54
%V 16
%N 1
%I Association pour la statistique et ses illustrations
%U http://geodesic.mathdoc.fr/item/SAD_1991__16_1_43_0/
%G en
%F SAD_1991__16_1_43_0
Limam, Mohamed M. T. Tolerance bounds for Weibull regression models. Statistique et analyse des données, Tome 16 (1991) no. 1, pp. 43-54. http://geodesic.mathdoc.fr/item/SAD_1991__16_1_43_0/

Bain, L.J. and Engelhardt, M., (1981), Simple approximate distributional results for confidence and tolerance limits for the Weibull distribution based on maximum likelihood estimators, Technometrics, 23, pp. 15-19. | Zbl

Bain, L.J. and Engelhardt, M., (1986), Approximate distributional results based on the maximum likelihood estimators for the Weibull distribution, Journal of Quality Technology, 18, pp. 174-181. | Zbl

Harter, L.H., (1978), A bibliography of extreme value theory, International Statistical Review, 46, pp. 279-036. | Zbl | MR

International Mathematical and Statistical Libraries, Inc., (1987), IMSL library Reference Manual, Houston.

Johnson, N.L. and Kotz, S., (1970), Distributions in Statistics : Continuous Univariate Distributions - 1, Houghton Mifflin Co., Boston. | Zbl | MR

Jones, R.A., Scholz, F.W.Ossiander, M. and Shorack, G.R., (1985), Tolerance bounds for log gamma regression models, Technometrics, 27, pp. 109-118. | Zbl | MR

Lawless, J.F., (1982), Statistical Models and Methods for Lifetime Data, First Edition, John Wiley and Sons, Inc. | Zbl | MR

Lieberman, G. and Miller, R., (1963), Simultaneous tolerance intervals in regression, Biometrika, 50, pp. 155-168. | Zbl | MR

Limam, M.M.T. and Thomas, D.R., ( 1988a), Simultaneous tolerance intervals for the linear regression model, Journal of the American Statistical Association, 83,403, pp. 801-804. | Zbl | MR

Limam, M.M.T. and Thomas, D.R., ( 1988b), Simultaneous tolerance intervals in the random one-way model with covariates, Communications in Statistics, Simulation and Computation, 17, 3, pp. 1007-1019. | Zbl

Miller, R.G. Jr, (1981), Simultaneous Statistical Inference, Second Edition, Springer-Verlag, New York. | Zbl | MR

Nelson, W.B., (1970), Statistical methods for accelerated lifetest data - the inverse power law model, General Electric Co. Technical Report 71-C-011, Schenectady, New York.

Statistical Analysis System, (1985), SAS/Stat Guide, SAS Institute Inc,. Box 8000, Cary, North Carolina.

Verhagen, A.M., (1961), The estimation of regression and error scale parameter when the joint distribution of the errors is of any continuous form and known apart from a scale parameter, Biometrika, 48, pp. 125-132. | Zbl | MR

Williams, J.S., (1962), A confidence interval for variance components, Biometrika, 49, pp. 278-281. | Zbl | MR

Wilson, A.L., (1967), An approach to simultaneous tolerance intervals in regression, Annals of Statistics, 30, pp. 939-959. | Zbl | MR