Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2023_1_8_1_a4, author = {Benci, Vieri and Luperi Baglini, Lorenzo}, title = {Tre percorsi nonstandard}, journal = {Matematica, cultura e societ\`a}, pages = {57--78}, publisher = {mathdoc}, volume = {Ser. 1, 8}, number = {1}, year = {2023}, zbl = {07820843}, mrnumber = {859372}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RUMI_2023_1_8_1_a4/} }
Benci, Vieri; Luperi Baglini, Lorenzo. Tre percorsi nonstandard. Matematica, cultura e società, Série 1, Tome 8 (2023) no. 1, pp. 57-78. http://geodesic.mathdoc.fr/item/RUMI_2023_1_8_1_a4/
[1] Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Dover Books on Mathematics,2009. | MR | Zbl
, , , ,[2] Infinitesimals: How a Dangerous Mathematical Theory Shaped the Modern World, Scientific American, 2014. | MR | Zbl
,[3] A ring homomorphism is enough to get nonstandard analysis, Bull. Belg. Math. Soc. 10 (2003), 1-10. | MR | Zbl
, ,[4] Alpha-theory: an elementary axiomatic for nonstandard analysis, Expo. Math. 21 (2003), 355-386. | DOI | MR | Zbl
, ,[5] Numerosities of labelled sets: a new way of counting, Adv. Math. 173 (2003), 50-67. | DOI | MR | Zbl
, ,[6] How to measure the Infinite: Mathematics with Infinite and Infinitesimal Numbers, World Scientific, Singapore, 2018. | MR | Zbl
, ,[7] La matematica e l'infinito, Carocci, 2019, ISBN: 8843095250.
, ,[8] Alcune osservazioni sulla matematica non archimedea, Matem. Cultura e Soc., RUMI, 1 (2016), 105-122. | fulltext bdim | fulltext EuDML | Zbl
, ,[9] Non-Archimedean Probability, Milan J. Math. 81 (2013), 121-151. | DOI | MR | Zbl
, , ,[10] Euclidean numbers and numerosities, J. Symbolic Logic (2022), 1-35. | DOI | MR | Zbl
, ,[11] Alla scoperta dei numeri infinitesimi, Lezioni di analisi matematica esposte in un campo non-archimedeo, Aracne editrice, Roma, 2018. | MR | Zbl
,[12] Un possibile percorso didattico: dalle numerosità ai numeri euclidei, Atti del convegno: VIII giornata nazionale di Analisi Nonstandard (P. Bonavoglia ed.), 21-33, 2019, ISBN: 1220064475.
,[13] Il calcolo infinitesimale. Analisi per i licei alla maniera non standard, Universal Book, 2011, ISBN9788896354131.
,[14] Ultrafilters and ultraproducts in non-standard analysis, in: Contributions to NonStandard Analysis (W.A.J. Luxemburg, A. Robinson, eds.), North Holland, Amsterdam (1972), 261-279. | MR | Zbl
, ,[15] Iterated Hyper-Extensions and an Idempotent Ultrafilter Proof of Rado's Theorem, Proc. Amer.Math. Soc. 143 (2015), 1749-1761. | DOI | MR | Zbl
,[16] Ramsey properties of nonlinear Diophantine equations, Adv. Math. 324 (2018),84-117. | DOI | MR
, ,[17] Nonstandard Methods in Ramsey Theory and Combinatorial NumberTheory, Lecture Notes in Mathematics 2239, Springer, 2019. | DOI | MR | Zbl
, , ,[18] Über die Paradoxen des Infinitär Calcüls, Math. Annalen 11 (1877), 150-167. | fulltext EuDML | DOI | MR | Zbl
,[19] Lectures on the Hyperreals – An Introduction to Nonstandard Analysis, Graduate Texts in Mathematics, Vol. 188, Springer, New York, 1998. | DOI | MR | Zbl
,[20] Grundlagen der Geometrie, Festschrift zur Feier der Enthüllung des Gauss-Weber Denkmals in Göttingen, Teubner, Leipzig, 1899. | MR | Zbl
,[21] Algebra in the Stone-Čech Compactification, de Gruyter, Berlin, 1998. | DOI | MR | Zbl
, ,[22] Nonstandard combinatorics, Studia Logica 47 (1988), 221-232. | DOI | MR
,[23] Internally iterated ultrapowers, in: Nonstandard Models of Arithmetic and Set Theory (A. Enayat, R. Kossak, eds.), Contemporary Math. 361, 2004, American Mathematical Society. | DOI | MR | Zbl
,[24] Analysis with Ultrasmall Numbers, Chapman & Hall/CRC (2015). | Zbl
, , ,[25] Introduction of nonstandard methods for number theorists, Proceedings of the CANT (2005) – Conference in Honor of Mel Nathanson, Integers 8 (2008), A7. | MR | Zbl
,[26] Foundations of infinitesimal calculus, last edition, University of Wisconsin at Madison, 2009. | Zbl
,[27] Some applications of iterated ultrapowers in set theory, Ann. Math. Log. 1 (1970), 179-227. | DOI | MR | Zbl
,[28] Some Nonstandard Methods in Combinatorial Number Theory, Studia Logica 47 (1988), 265-278. | DOI | MR | Zbl
,[29] Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti del R. Istituto Veneto di Scienze Lettere ed Arti, Venezia (Serie 7), (1892-93).
,[30] Hyperintegers and Nonstandard Techniques in Combinatorics of Numbers, PhD Dissertation (2012), University of Siena, arXiv: 1212.2049. | MR | Zbl
,[31] Quanti elementi ha un insieme infinito, Matematica Mente 293-94 (2022).
,[32] Nonstandard characterisations of tensor products and monads in the theory of ultrafilters, Math. Log. Quart. 65 (2019), 347-369. | DOI | MR | Zbl
,[33] A General Theory of Monads, in: Applications of Model Theory to Algebra, Analysis and Probability, (W.A.J. Luxemburg ed.), Holt, Rinehart, and Winston, New York, 1969, 18-86. | MR | Zbl
,[34] Introduzione alla Logica Matematica, Bollati Boringhieri, 1977.
,[35] Sugli ordini degli infiniti, Rendiconti della Reale Accademia dei Lincei 19 (1910), 778-781.
,[36] An approach to nonstandard quantum mechanics, J. Math. Phys. 45 (2004), 4791-4809. | DOI | MR | Zbl
,[37] Non-standard Analysis, North Holland, Amsterdam, 1966. | MR | Zbl
,[38] Nonstandard analysis in mathematical economics, in: Nonstandard Analysis for the Working Mathematician (P. Loeb, M. Wolff eds.), Second edition, Springer (2015),349-399. | DOI | MR | Zbl
,[39] Il continuo rettilineo e l'assioma V di Archimede, Memorie della Reale Accademia dei Lincei, Atti della Classe di scienze naturali, fisiche e matematiche 4, (1889), 603-624. | Zbl
,[40] Intorno ad alcune osservazioni sui segmenti infiniti o infinitesimi attuali, Math. Ann. 47 (1896), 423-432. | fulltext EuDML | DOI | MR | Zbl
,[41] Matematica C3, www.matematicadolce.eu, (2019). ISBN: 9788899988005. | Zbl
et al.,