A Central Result from Newton's Principia Mathematica: The Body of Least Resistance
Matematica, cultura e società, Série 1, Tome 6 (2021) no. 2, pp. 115-125 Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica

Voir la notice de l'article

Following an invitation of Hugo Beirão da Veiga I gave on February, 28, 2018, two lectures at the Centro de Matemática Computacional e Estocástica, Instituto Superior Técnico, Universidade de Lisboa, and I thank him very much for the possibility of presenting theses gems of Newton's inventions. The topics were “Central Results from Newton's Principia Mathematica”, namely “The Body of Least Resistance”, where Newton treats a variational problem in a truly astonishing way, and “The Force of Attraction of a Spherical Body”, where he uses Greek geometry in order to evaluate a singular integral. This paper contains the first lecture.
@article{RUMI_2021_1_6_2_a1,
     author = {Bemelmans, Josef},
     title = {A {Central} {Result} from {Newton's} {Principia} {Mathematica:} {The} {Body} of {Least} {Resistance}},
     journal = {Matematica, cultura e societ\`a},
     pages = {115--125},
     year = {2021},
     volume = {Ser. 1, 6},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2021_1_6_2_a1/}
}
TY  - JOUR
AU  - Bemelmans, Josef
TI  - A Central Result from Newton's Principia Mathematica: The Body of Least Resistance
JO  - Matematica, cultura e società
PY  - 2021
SP  - 115
EP  - 125
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RUMI_2021_1_6_2_a1/
LA  - en
ID  - RUMI_2021_1_6_2_a1
ER  - 
%0 Journal Article
%A Bemelmans, Josef
%T A Central Result from Newton's Principia Mathematica: The Body of Least Resistance
%J Matematica, cultura e società
%D 2021
%P 115-125
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/RUMI_2021_1_6_2_a1/
%G en
%F RUMI_2021_1_6_2_a1
Bemelmans, Josef. A Central Result from Newton's Principia Mathematica: The Body of Least Resistance. Matematica, cultura e società, Série 1, Tome 6 (2021) no. 2, pp. 115-125. http://geodesic.mathdoc.fr/item/RUMI_2021_1_6_2_a1/