A Central Result from Newton's Principia Mathematica: The Body of Least Resistance
Matematica, cultura e società, Série 1, Tome 6 (2021) no. 2, pp. 115-125.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Following an invitation of Hugo Beirão da Veiga I gave on February, 28, 2018, two lectures at the Centro de Matemática Computacional e Estocástica, Instituto Superior Técnico, Universidade de Lisboa, and I thank him very much for the possibility of presenting theses gems of Newton's inventions. The topics were “Central Results from Newton's Principia Mathematica”, namely “The Body of Least Resistance”, where Newton treats a variational problem in a truly astonishing way, and “The Force of Attraction of a Spherical Body”, where he uses Greek geometry in order to evaluate a singular integral. This paper contains the first lecture.
Su invito di Hugo Beirão da Veiga ho tenuto il 28 febbraio 2018 due conferenze al Centro de Matemática Computacional e Estocástica, Instituto Superior Técnico, Universidade de Lisboa. Rivolgo a lui i miei ringraziamenti per avermi offerto l'occasione di presentare queste preziose scoperte di Newton. Gli argomenti delle conferenze riguardavano “Risultati fondamentali nei Principia Mathematica di Newton”, in particolare “Il corpo di minima resistenza”, dove Newton affronta un problema variazionale in un modo davvero sorprendente, e “La forza di attrazione di un corpo sferico”, dove egli impiega gli strumenti della geometria greca per calcolare un integrale singolare. Il presente articolo offre una versione estesa della prima conferenza.
@article{RUMI_2021_1_6_2_a1,
     author = {Bemelmans, Josef},
     title = {A {Central} {Result} from {Newton's} {Principia} {Mathematica:} {The} {Body} of {Least} {Resistance}},
     journal = {Matematica, cultura e societ\`a},
     pages = {115--125},
     publisher = {mathdoc},
     volume = {Ser. 1, 6},
     number = {2},
     year = {2021},
     zbl = {0918.01006},
     mrnumber = {1658501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2021_1_6_2_a1/}
}
TY  - JOUR
AU  - Bemelmans, Josef
TI  - A Central Result from Newton's Principia Mathematica: The Body of Least Resistance
JO  - Matematica, cultura e società
PY  - 2021
SP  - 115
EP  - 125
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2021_1_6_2_a1/
LA  - en
ID  - RUMI_2021_1_6_2_a1
ER  - 
%0 Journal Article
%A Bemelmans, Josef
%T A Central Result from Newton's Principia Mathematica: The Body of Least Resistance
%J Matematica, cultura e società
%D 2021
%P 115-125
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2021_1_6_2_a1/
%G en
%F RUMI_2021_1_6_2_a1
Bemelmans, Josef. A Central Result from Newton's Principia Mathematica: The Body of Least Resistance. Matematica, cultura e società, Série 1, Tome 6 (2021) no. 2, pp. 115-125. http://geodesic.mathdoc.fr/item/RUMI_2021_1_6_2_a1/

[1] Densmore, D.: Newton's Principia: The Central Argument, Translations, Notes, and Expanded Proofs, Santa Fe, NM, 21996. | MR | Zbl

[2] Gucciardini, N.: Reading the Principia. The Debate on Newton's Mathematical Methods for Natural Philosophy from 1687 to 1736, Cambridge, 1999. | DOI | MR

[3] Huygens, C.: Oeuvres complètes, Vol. 22, The Hague, 1950. | MR | Zbl

[4] Funk, P.: Variationsrechnung und ihre Anwendung in Physik und Technik, Berlin, 1962. | DOI | MR | Zbl

[5] Goldstine, H.H.: A History of the Calculus of Variations from the 17th through the 19th Century, New York, NY, 1980. | MR | Zbl

[6] Leibniz, G.W.: Mathematische Schriften, Bd. V, hg. von C. Gerhardt, Hildesheim, 1971. | MR

[7] Leibniz, G.W.: Marginalia in Newtoni Principia Mathematica, hg. von E.A. Fellmann, Paris, 1973. | MR

[8] Newton, I.: Philosophiae Naturalis Principia Mathematica, ed. by A. Koyré and I.B. Cohen, Cambridge, MA, 1973. | MR | Zbl

[9] Newton, I.: Principia, Vol. 1: The Motion of Bodies, Motte's Translation, rev. by F. Cajori, Berkeley, CA, 1934. | MR

[10] Newton, I.: The Mathematical Papers of Isaac Newton, Vol. V, 1683-1684, ed. by D.T. Whiteside, Cambridge, 1972. | MR

[11] Newton, I.: The Mathematical Papers of Isaac Newton, Vol. VI, 1684-1691, ed. by D.T. Whiteside, Cambridge, 1981. | MR

[12] Newton, I.: The Mathematical Papers of Isaac Newton, Vol. VIII, 1697-1722, ed. by D.T. Whiteside, Cambridge, 1974. | MR

[13] Newton, I.: The Correspondence of Isaac Newton, Vol. IV, 1694-1709, ed. by J.F. Scott, Cambridge, 1967. | MR

[14] Truesdell, C.: The Rational Mechanics of Flexible or Elastic Bodies 1638-1788, Introduction to Leonhardi Euleri Opera Omnia, Vol. X et Vol. XI Seriei Secundae, Zürich, 1960. | MR | Zbl