Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2020_1_5_3_a3, author = {Birindelli, Isabeau}, title = {Louis {Nirenberg,} un problem-solver, e molto di pi\`u}, journal = {Matematica, cultura e societ\`a}, pages = {193--199}, publisher = {mathdoc}, volume = {Ser. 1, 5}, number = {3}, year = {2020}, zbl = {1323.35123}, mrnumber = {3333057}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_3_a3/} }
Birindelli, Isabeau. Louis Nirenberg, un problem-solver, e molto di più. Matematica, cultura e società, Série 1, Tome 5 (2020) no. 3, pp. 193-199. http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_3_a3/
[1] Maximum principle and generalized principal eigenvalue for degenerate elliptic operators. J. Math. Pures Appl. (9) 103 (2015), no. 5, 1276-1293. | DOI | MR | Zbl
, , , ,[2] Influence of a road on a population in an ecological niche facing climate change. J. Math. Biol. 81 (2020), no. 4-5, 1059-1097. | DOI | MR | Zbl
, , ,[3] On the method of moving planes and the sliding method. Bol. Soc. Brasil. Mat. (N.S.) 22 (1991), no. 1, 1-37. | DOI | MR | Zbl
, ,[4] The principal eigenvalue and maximum principle for second order elliptic operators in general domains. Comm. Pure Appl. Math. 47 (1994), no. 1, 47-92. | DOI | MR | Zbl
, , ,[5] Eigenvalue and Maximum principle for fully nonlinear singular operators. Advances in Partial Diff. Equations 11 n.1 (2006), 91-119. | MR | Zbl
, ,[6] A family of degenerate elliptic operators: maximum principle and its consequences. Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 2, 417-441. | DOI | MR | Zbl
, , ,[7] Demi-eigen values for uniformly elliptic Isaacs operators. preprint.
, ,[8] On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators. C. R. Math. Acad. Sci. Paris 342 (2006), no. 2, 115-118. | DOI | MR | Zbl
, ,