Louis Nirenberg, un problem-solver, e molto di più
Matematica, cultura e società, Série 1, Tome 5 (2020) no. 3, pp. 193-199.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{RUMI_2020_1_5_3_a3,
     author = {Birindelli, Isabeau},
     title = {Louis {Nirenberg,} un problem-solver, e molto di pi\`u},
     journal = {Matematica, cultura e societ\`a},
     pages = {193--199},
     publisher = {mathdoc},
     volume = {Ser. 1, 5},
     number = {3},
     year = {2020},
     zbl = {1323.35123},
     mrnumber = {3333057},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_3_a3/}
}
TY  - JOUR
AU  - Birindelli, Isabeau
TI  - Louis Nirenberg, un problem-solver, e molto di più
JO  - Matematica, cultura e società
PY  - 2020
SP  - 193
EP  - 199
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_3_a3/
LA  - it
ID  - RUMI_2020_1_5_3_a3
ER  - 
%0 Journal Article
%A Birindelli, Isabeau
%T Louis Nirenberg, un problem-solver, e molto di più
%J Matematica, cultura e società
%D 2020
%P 193-199
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_3_a3/
%G it
%F RUMI_2020_1_5_3_a3
Birindelli, Isabeau. Louis Nirenberg, un problem-solver, e molto di più. Matematica, cultura e società, Série 1, Tome 5 (2020) no. 3, pp. 193-199. http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_3_a3/

[1] H. Berestycki, I. Capuzzo Dolcetta, A. Porretta, L. Rossi, Maximum principle and generalized principal eigenvalue for degenerate elliptic operators. J. Math. Pures Appl. (9) 103 (2015), no. 5, 1276-1293. | DOI | MR | Zbl

[2] H. Berestycki, R. Ducasse, L. Rossi, Influence of a road on a population in an ecological niche facing climate change. J. Math. Biol. 81 (2020), no. 4-5, 1059-1097. | DOI | MR | Zbl

[3] H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method. Bol. Soc. Brasil. Mat. (N.S.) 22 (1991), no. 1, 1-37. | DOI | MR | Zbl

[4] H. Berestycki, L. Nirenberg, S.R.S. Varadhan, The principal eigenvalue and maximum principle for second order elliptic operators in general domains. Comm. Pure Appl. Math. 47 (1994), no. 1, 47-92. | DOI | MR | Zbl

[5] I. Birindelli, F. Demengel, Eigenvalue and Maximum principle for fully nonlinear singular operators. Advances in Partial Diff. Equations 11 n.1 (2006), 91-119. | MR | Zbl

[6] I. Birindelli, G. Galise, H. Ishii, A family of degenerate elliptic operators: maximum principle and its consequences. Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 2, 417-441. | DOI | MR | Zbl

[7] H. Ishii, Y. Yoshimura, Demi-eigen values for uniformly elliptic Isaacs operators. preprint.

[8] A. Quaas, B. Sirakov, On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators. C. R. Math. Acad. Sci. Paris 342 (2006), no. 2, 115-118. | DOI | MR | Zbl