Cantor's Continuum Hypothesis: consequences in mathematics and its foundations
Matematica, cultura e società, Série 1, Tome 3 (2018) no. 3, pp. 237-252.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We give an overview of the continuum hypothesis, of its impact on mathematics, and on the foundations of set theory.
Si illustra l'ipotesi del continuo, le sue applicazioni in matematica e le sue conseguenze sui fondamenti della matematica.
@article{RUMI_2018_1_3_3_a4,
     author = {Andretta, Alessandro},
     title = {Cantor's {Continuum} {Hypothesis:} consequences in mathematics and its foundations},
     journal = {Matematica, cultura e societ\`a},
     pages = {237--252},
     publisher = {mathdoc},
     volume = {Ser. 1, 3},
     number = {3},
     year = {2018},
     zbl = {1194.03040},
     mrnumber = {3888478},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_3_a4/}
}
TY  - JOUR
AU  - Andretta, Alessandro
TI  - Cantor's Continuum Hypothesis: consequences in mathematics and its foundations
JO  - Matematica, cultura e società
PY  - 2018
SP  - 237
EP  - 252
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_3_a4/
LA  - en
ID  - RUMI_2018_1_3_3_a4
ER  - 
%0 Journal Article
%A Andretta, Alessandro
%T Cantor's Continuum Hypothesis: consequences in mathematics and its foundations
%J Matematica, cultura e società
%D 2018
%P 237-252
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_3_a4/
%G en
%F RUMI_2018_1_3_3_a4
Andretta, Alessandro. Cantor's Continuum Hypothesis: consequences in mathematics and its foundations. Matematica, cultura e società, Série 1, Tome 3 (2018) no. 3, pp. 237-252. http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_3_a4/

[And03a] Alessandro Andretta. “Absoluteness theorems in set theory. I”. In: Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8) 6.1 (2003), pp. 57-84. ISSN: 0392-4033. | fulltext EuDML | MR | Zbl

[And03b] Alessandro Andretta. “Absoluteness theorems in set theory. II”. In: Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8) 6.3 (2003), pp. 489-507. ISSN: 0392-4033. | fulltext EuDML | MR | Zbl

[Can80] Georg Cantor. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Ed. by Ernst Zermelo. Springer Collected Works in Mathematics. Springer-Verlag, 1980. | MR | Zbl

[Cho09] Timothy Y. Chow. “A beginner's guide to forcing”. In: Communicating mathematics. Vol. 479. Contemp. Math. Amer. Math. Soc., Providence, RI, 2009, pp. 25-40. url: https://doi.org/10.1090/conm/479/09340. | DOI | MR | Zbl

[CM84] Jacek Cichonâ and Michał Morayne. “On differentiability of Peano type functions. III”. In: Proc. Amer. Math. Soc. 92.3 (1984), pp. 432-438. ISSN: 0002-9939. doi: 10.2307/2044851. url: http://dx.doi.org/10.2307/2044851. | Zbl

[CF14] Samuel Coskey and Ilijas Farah. “Automorphisms of corona algebras, and group cohomology”. In: Trans. Amer. Math. Soc. 366.7 (2014), pp. 3611-3630. ISSN: 0002-9947. url: https://doi.org/10.1090/S0002-9947-2014-06146-1. | DOI | MR | Zbl

[DW87] H. G. Dales and W. H. Woodin. An introduction to independence for analysts. Vol. 115. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 1987, pp. xiv+241. isbn: 0-521-33996-0. | DOI | MR | Zbl

[Dau90] Joseph W. Dauben. Georg Cantor: His Mathematics and Philosophy of the Infinite. Princeton University Press, 1990. | MR | Zbl

[Dav72] Roy O. Davies. “Partitioning the plane into denumberably many sets without repeated distances”. In: Proc. Cambridge Philos. Soc. 72 (1972), pp. 179-183. | DOI | MR | Zbl

[Dav74] Roy O. Davies. “Representation of functions of two variables as sums of rectangular functions. I”. In: Fund. Math. 85.2 (1974), pp. 177-183. ISSN: 0016-2736. | fulltext EuDML | DOI | MR | Zbl

[Die82] Jean Alexandre Dieudonné. A panorama of pure mathematics. Vol. 97. Pure and Applied Mathematics. tradotto dal francese da I. G. Macdonald. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982, pp. x+289. ISBN: 0-12-215560-2. | MR

[EM02] Paul C. Eklof and Alan H. Mekler. Almost free modules. Revised. Vol. 65. North-Holland Mathematical Library. Set-theoretic methods. NorthHolland Publishing Co., Amsterdam, 2002, pp. xxii+597. isbn: 0-444-50492-3. | MR | Zbl

[EJM94] P. Erdős, Steve Jackson, and R. Daniel Mauldin. “On partitions of lines and space”. In: Fund. Math. 145.2 (1994), pp. 101-119. ISSN: 0016-2736. | fulltext EuDML | MR | Zbl

[Erd64] Paul Erdős. “An interpolation problem associated with the continuum hypothesis”. In: Michigan Math. J. 11 (1964), pp. 9-10. ISSN: 0026-2285. | MR

[EK43] Paul Erdős and S. Kakutani. “On non-denumerable graphs”. In: Bull. Amer. Math. Soc. 49 (1943), pp. 457-461. issn: 0002-9904. | DOI | MR | Zbl

[Far11] Ilijas Farah. “All automorphisms of the Calkin algebra are inner”. In: Ann. of Math. (2) 173.2 (2011), pp. 619-661. ISSN: 0003-486X. url: https://doi.org/10.4007/annals.2011.173.2.1. | DOI | MR | Zbl

[Far+14] Ilijas Farah et al. “A simple C*-algebra with nite nuclear dimension which is not Ƶ-stable”. In: Münster J. Math. 7.2 (2014), pp. 515-528. ISSN: 1867-5778. | MR | Zbl

[Fol99] Gerald B. Folland. Real analysis. Second. Pure and Applied Mathematics (New York). Modern techniques and their applications, A Wiley-Interscience Publication. New York: John Wiley & Sons Inc., 1999, pp. xvi+386. ISBN: 0-47131716-0. | MR | Zbl

[GKW12] DOV GABBAY, AKIHIRO KANAMORI and JOHN WOODS, eds. Handbook of the History of Logic. Sets and extensions in the twentieth century. Vol. 6. Elsevier/North-Holland, 2012. | DOI | MR | Zbl

[GL01] J. Ginsburg and V. Linek. “A space-filling complete graph”. In: Ars Combin. 58 (2001), pp. 97-109. ISSN: 0381-7032. | MR | Zbl

[HS12] Neil Hindman and Dona Strauss. Algebra in the Stone-Cech compactification. De Gruyter Textbook. Theory and applications, Second revised and extended edition [of MR1642231]. Walter de Gruyter & Co., Berlin, 2012, pp. xviii+591. ISBN: 978-3-11-025623-9. | MR | Zbl

[HLT15] HYKEL HOSNI, GABRIELE LOLLI and CARLO TOFFALORI, eds. Le direzioni della ricerca logica in Italia. Edizioni Scuola Normale, 2015. ISBN: 978-88-7642-570-7.

[Jec03] Thomas Jech. Set theory. Springer Monographs in Mathematics. The third millennium edition, revised and expanded. Berlin: Springer-Verlag, 2003, pp. xiv+769. ISBN: 3-540-44085-2. | MR

[Kom01] Péter Komjáth. “Three clouds may cover the plane”. In: Ann. Pure Appl. Logic 109.1-2 (2001). Dedicated to Petr Vopenka, pp. 71-75. ISSN: 0168-0072. DOI: 10.1016/S0168-0072(01)00042-2. URL: http://dx.doi.org/10.1016/S0168-0072(01)00042-2. | DOI | MR

[Kra+05] Linus Kramer et al. “Asymptotic cones of nitely presented groups”. In: Adv. Math. 193.1 (2005), pp. 142-173. ISSN: 0001-8708. URL: https://doi.org/10.1016/j.aim.2004.04.012. | DOI | MR | Zbl

[KS17] Ashutosh Kumar and Saharon Shelah. “On a question about families of entire functions”. In: Fundamenta Mathematic 239 (2017), pp. 279-288. | DOI | MR | Zbl

[Kun87] Kenneth Kunen. “Partitioning Euclidean space”. In: Math. Proc. Cambridge Philos. Soc. 102.3 (1987), pp. 379-383. ISSN: 0305-0041. DOI: 10.1017/S0305004100067426. URL: http://dx.doi.org/10.1017/S0305004100067426. | Zbl

[Mon97] Michael Monastyrsky. Modern mathematics in the light of the Fields medals. Translate from the 1991 original text in russian by Roger Cooke and revised by the author, with an introduction by Freeman Dyson. A K Peters, Ltd., Wellesley, MA, 1997, pp. xvi+160. ISBN: 1-56881-065-2. | MR

[Mor87] Michał Morayne. “On differentiability of Peano type functions. I, II”. In: Colloq. Math. 53.1 (1987), pp. 129-132, 133-135. ISSN: 0010-1354. | fulltext EuDML | DOI | MR | Zbl

[Rit15] Colin J. Rittberg. “How Woodin changed his mind: new thoughts on the continuum hypothesis”. In: Arch. Hist. Exact Sci. 69.2 (2015), pp. 125-151. ISSN: 0003-9519. url: https://doi.org/10.1007/s00407-014-0142-8. | DOI | MR | Zbl

[Sch03] James H. Schmerl. “How many clouds cover the plane?” In: Fund. Math. 177.3 (2003), pp. 209-211. ISSN: 0016-2736. doi: 10.4064/fm177-3-2. url: http://dx.doi.org/10.4064/fm177-3-2. | fulltext EuDML | DOI | MR | Zbl

[Sch10] James H. Schmerl. “Covering the plane with sprays”. In: Fund. Math. 208.3 (2010), pp. 263-272. issn: 0016-2736. url: https://doi.org/10.4064/fm208-3-3. | fulltext EuDML | DOI | MR | Zbl

[Sie56] Wacław Sierpiński. Hypothèse du continu. 2nd ed. Chelsea Publishing Company, New York, N. Y., 1956, pp. xvii+274. | fulltext EuDML

[Sim91] John C. Simms. “Sierpiński's theorem”. In: Simon Stevin 65.1-2 (1991), pp. 69-163. ISSN: 0037-5454. | MR

[Smo91] Craig Smoryński. Logical number theory. I. Universitext. An introduction. Berlin: Springer-Verlag, 1991, pp. x+405. isbn: 3-540-52236-0. doi: 10.1007/978-3-642-75462-3. url: http://dx.doi.org/10.1007/978-3-642-75462-3.

[Tod06] Stevo Todorcevic. “Biorthogonal systems and quotient spaces via Baire category methods”. In: Math. Ann. 335.3 (2006), pp. 687-715. issn: 0025-5831. url: https://doi.org/10.1007/s00208-006-0762-7. | DOI | MR | Zbl

[Veg09] Ramiro De La Vega. “Decompositions of the plane and the size of the continuum”. In: Fund. Math. 203.1 (2009), pp. 65-74. issn: 0016-2736. url: https://doi.org/10.4064/fm203-1-6. | fulltext EuDML | DOI | MR | Zbl

[Woo99] W. Hugh Woodin. The axiom of determinacy, forcing axioms, and the nonstationary ideal. Vol. 1. de Gruyter Series in Logic and its Applications. Berlin: Walter de Gruyter; Hugh Woodin. “The continuum hypothesis. I”. In: Notices Amer. Math. Soc. 48.6 (2001), pp. 567-576. ISSN: 0002-9920. | DOI | MR

[Woo01b] W. Hugh Woodin. “The continuum hypothesis. II”. In: Notices Amer. Math. Soc. 48.7 (2001), pp. 681-690. ISSN: 0002-9920. | MR | Zbl

[Woo17] W. Hugh Woodin. “In search of Ultimate-L: the 19th Midrasha Mathematicae Lectures”. In: Bull. Symb. Log. 23.1 (2017), pp. 1-109. ISSN: 1079-8986. url: https://doi.org/10.1017/bsl.2016.34. | DOI | MR | Zbl

[Zol06] Enrico Zoli. “Another algebraic equivalent of the continuum hypothesis”. In: Tatra Mt. Math. Publ. 34. part II (2006), pp. 223-228. issn: 1210-3195. | MR | Zbl