Su un teorema di Ariki
Matematica, cultura e società, Série 1, Tome 3 (2018) no. 1, pp. 31-44.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In questa nota si vuole introdurre il lettore alla teoria delle rappresentazioni. Presenteremo un risultato di Ariki del 1996, un esempio delle tecniche recenti che usano le interazioni tra le differenti teorie (rappresentazioni di gruppi, di algebre associative, di algebre di Lie) e con la geometria (ma faremo solo un cenno alla fine su quest'ultimo punto).
In this note we introduce the reader to the representation theory. We present a result of Ariki (1996) which gives a flavour of the modern way to study it, using interactions between different theories (representations of groups, associative algebras, Lie algebras), and with geometry (but we do not insist on this latter).
@article{RUMI_2018_1_3_1_a3,
     author = {Varagnolo, Michela},
     title = {Su un teorema di {Ariki}},
     journal = {Matematica, cultura e societ\`a},
     pages = {31--44},
     publisher = {mathdoc},
     volume = {Ser. 1, 3},
     number = {1},
     year = {2018},
     zbl = {1397.20014},
     mrnumber = {3821681},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a3/}
}
TY  - JOUR
AU  - Varagnolo, Michela
TI  - Su un teorema di Ariki
JO  - Matematica, cultura e società
PY  - 2018
SP  - 31
EP  - 44
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a3/
LA  - it
ID  - RUMI_2018_1_3_1_a3
ER  - 
%0 Journal Article
%A Varagnolo, Michela
%T Su un teorema di Ariki
%J Matematica, cultura e società
%D 2018
%P 31-44
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a3/
%G it
%F RUMI_2018_1_3_1_a3
Varagnolo, Michela. Su un teorema di Ariki. Matematica, cultura e società, Série 1, Tome 3 (2018) no. 1, pp. 31-44. http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a3/

[1] Ariki, S., On the decomposition numbers of the Hecke algebra of $G(m; 1; n)$, J. Math. Kyoto Univ., 36 (4) (1996), 789-808. | DOI | MR | Zbl

[2] Chriss, N., Ginzburg, Representation Theory and Complex Geometry, Birkhäuser (1997). | MR | Zbl

[3] Dipper, R., James, G.D., Representations of Hecke algebras of general linear groups, Proc. London Math. Soc., 52 (1986), 20-52. | DOI | MR | Zbl

[4] Elias, B., Williamson, G., The Hodge Theory of Soergel bimodules, Annals of Maths. 180 (2014), 1- 48. | DOI | MR | Zbl

[5] Geck, M., Hiss, G., Malle, G., Towards a classification of the irreducible representations in non-describing characteristic of a finite group of Lie type, Math. Z. 221 (1996), no. 3, 353-386. | fulltext EuDML | DOI | MR | Zbl

[6] Goodman, F., Wenzl, H., Crystal bases of quantum affine algebras and affine Kazhdan-Lusztig polynomials, Internat. Math. Res. Notices, 5 (1999), 251-275. | DOI | MR | Zbl

[7] Hayashi, T., q-analogue of Clifford and Weil algebras-Spinor and oscillator representations of quantum enveloping algebra, Comm. Math. Phys., 127 (1999), 129-144. | MR | Zbl

[8] Humphreys, J. E., Introduction to Lie Algebras and Representation Theory, Springer-Verlag, third printing, revised (1980). | MR | Zbl

[9] Humphreys, J. E., Reflection Groups and Coxeter Groups, Cambride University Press (1990). | DOI | MR | Zbl

[10] Jamers, G., The decomposition matrices of $GL_n(q)$ for $n \leq 10$, Proc. Lond. Math. Soc., 60 (1990), 225-265. | DOI | MR

[11] Jimbo, M., A q-analogue of $U(\mathfrak{gl}(N + 1))$, Hecke algebra and the Yang-Baxter equation, Lett. Math. Phys., 11 (1986), 247-252. | DOI | MR | Zbl

[12] Jones V. F. R., Hecke algebra representations of braid groups, Annals of Math., 126 (2) (1987), 335-388. | DOI | MR | Zbl

[13] Jimbo, M., Misra, K., Miwa, T., Okado, M., Combinatorics of representations of $U_q(\widehat{\mathfrak{sl}}(n))$ at $q = 0$, Comm. Math. Phys., 136 (1991), 543-566. | MR | Zbl

[14] Kashiwara, M., On crystal bases of q-analogue of universal enveloping algebra, Duke Math. J., 63 (1991), 465-516. | DOI | MR | Zbl

[15] Kashiwara, M., On crystal bases, CMS Conf. Proc., 16 (1995), 155-197. | MR | Zbl

[16] Kac, V.G., Infinite Dimensional Lie Algebras (third edition), Cambridge University Press, (1990). | DOI | MR | Zbl

[17] Kronheimer, P.B., Mrowka, T. S., Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci., 113 (2011), 97-208. | DOI | MR | Zbl

[18] Lascoux, A., Leclerc, B., Thibon, J-Y., Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Commun. Math. Phys., 181 (1996), 205-263. | MR | Zbl

[19] Misra, K., Miwa, T., Crystal base for the basic representation of $U_q(\widehat{\mathfrak{sl}}(n))$, Comm. Math. Phys., 134 (1990), 79-88. | MR | Zbl

[20] Sagan, B. E., The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions, GTM Springer (2001). | DOI | MR | Zbl

[21] Varagnolo, M., Vasserot, E., On the decomposition matrices of the quantized Schur algebra, Duke Math. J., 100 (1999), 267-297. | DOI | MR | Zbl

[22] Williamson, G., Schubert calculus and torsion explosion, J. AMS, 30 (2017), 1023-1046. | DOI | MR | Zbl