On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in and degenerate in
Rendiconti del Seminario Matematico della Università di Padova, Tome 100 (1998), pp. 81-96
Cet article a éte moissonné depuis la source Numdam
@article{RSMUP_1998__100__81_0,
author = {Kinoshita, Tamotu},
title = {On the wellposedness in the {Gevrey} classes of the {Cauchy} problem for weakly hyperbolic equations whose coefficients are {H\"older} continuous in $t$ and degenerate in $t = T$},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {81--96},
year = {1998},
publisher = {Seminario Matematico of the University of Padua},
volume = {100},
mrnumber = {1675255},
zbl = {0927.35055},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RSMUP_1998__100__81_0/}
}
TY - JOUR AU - Kinoshita, Tamotu TI - On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in $t$ and degenerate in $t = T$ JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1998 SP - 81 EP - 96 VL - 100 PB - Seminario Matematico of the University of Padua UR - http://geodesic.mathdoc.fr/item/RSMUP_1998__100__81_0/ LA - en ID - RSMUP_1998__100__81_0 ER -
%0 Journal Article %A Kinoshita, Tamotu %T On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in $t$ and degenerate in $t = T$ %J Rendiconti del Seminario Matematico della Università di Padova %D 1998 %P 81-96 %V 100 %I Seminario Matematico of the University of Padua %U http://geodesic.mathdoc.fr/item/RSMUP_1998__100__81_0/ %G en %F RSMUP_1998__100__81_0
Kinoshita, Tamotu. On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in $t$ and degenerate in $t = T$. Rendiconti del Seminario Matematico della Università di Padova, Tome 100 (1998), pp. 81-96. http://geodesic.mathdoc.fr/item/RSMUP_1998__100__81_0/