Covering theorems for finite nonabelian simple groups. III. - Solutions of the equation αx 2 +βt 2 +γt -2 =a in a finite field
Rendiconti del Seminario Matematico della Università di Padova, Tome 55 (1976), pp. 81-90

Voir la notice de l'article provenant de la source Numdam

@article{RSMUP_1976__55__81_0,
     author = {Brenner, J. L. and Carlitz, L.},
     title = {Covering theorems for finite nonabelian simple groups. {III.} - {Solutions} of the equation $\alpha x^2 + \beta t^2 + \gamma t^{-2} = a$ in a finite field},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {81--90},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {55},
     year = {1976},
     zbl = {0352.20003},
     mrnumber = {457549},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RSMUP_1976__55__81_0/}
}
TY  - JOUR
AU  - Brenner, J. L.
AU  - Carlitz, L.
TI  - Covering theorems for finite nonabelian simple groups. III. - Solutions of the equation $\alpha x^2 + \beta t^2 + \gamma t^{-2} = a$ in a finite field
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1976
SP  - 81
EP  - 90
VL  - 55
PB  - Seminario Matematico of the University of Padua
UR  - http://geodesic.mathdoc.fr/item/RSMUP_1976__55__81_0/
LA  - en
ID  - RSMUP_1976__55__81_0
ER  - 
%0 Journal Article
%A Brenner, J. L.
%A Carlitz, L.
%T Covering theorems for finite nonabelian simple groups. III. - Solutions of the equation $\alpha x^2 + \beta t^2 + \gamma t^{-2} = a$ in a finite field
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1976
%P 81-90
%V 55
%I Seminario Matematico of the University of Padua
%U http://geodesic.mathdoc.fr/item/RSMUP_1976__55__81_0/
%G en
%F RSMUP_1976__55__81_0
Brenner, J. L.; Carlitz, L. Covering theorems for finite nonabelian simple groups. III. - Solutions of the equation $\alpha x^2 + \beta t^2 + \gamma t^{-2} = a$ in a finite field. Rendiconti del Seminario Matematico della Università di Padova, Tome 55 (1976), pp. 81-90. http://geodesic.mathdoc.fr/item/RSMUP_1976__55__81_0/