Voir la notice de l'article provenant de la source Numdam
@article{RSMUP_1949__18__311_0, author = {Bagchi, Haridas}, title = {Note on the two congruences $ax^2 + by^2 + e \equiv 0$, $ax^2 + by^2 + cz^2 + dw^2 \equiv 0 \: (\text{mod. } p)$, where $p$ is an odd prime and $a \lnot \equiv 0$, $b \lnot \equiv 0$, $c \lnot \equiv 0$, $d \lnot \equiv 0 \: (\text{mod. } p)$}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {311--315}, publisher = {Seminario Matematico of the University of Padua}, volume = {18}, year = {1949}, zbl = {0033.01202}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RSMUP_1949__18__311_0/} }
TY - JOUR AU - Bagchi, Haridas TI - Note on the two congruences $ax^2 + by^2 + e \equiv 0$, $ax^2 + by^2 + cz^2 + dw^2 \equiv 0 \: (\text{mod. } p)$, where $p$ is an odd prime and $a \lnot \equiv 0$, $b \lnot \equiv 0$, $c \lnot \equiv 0$, $d \lnot \equiv 0 \: (\text{mod. } p)$ JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1949 SP - 311 EP - 315 VL - 18 PB - Seminario Matematico of the University of Padua UR - http://geodesic.mathdoc.fr/item/RSMUP_1949__18__311_0/ LA - en ID - RSMUP_1949__18__311_0 ER -
%0 Journal Article %A Bagchi, Haridas %T Note on the two congruences $ax^2 + by^2 + e \equiv 0$, $ax^2 + by^2 + cz^2 + dw^2 \equiv 0 \: (\text{mod. } p)$, where $p$ is an odd prime and $a \lnot \equiv 0$, $b \lnot \equiv 0$, $c \lnot \equiv 0$, $d \lnot \equiv 0 \: (\text{mod. } p)$ %J Rendiconti del Seminario Matematico della Università di Padova %D 1949 %P 311-315 %V 18 %I Seminario Matematico of the University of Padua %U http://geodesic.mathdoc.fr/item/RSMUP_1949__18__311_0/ %G en %F RSMUP_1949__18__311_0
Bagchi, Haridas. Note on the two congruences $ax^2 + by^2 + e \equiv 0$, $ax^2 + by^2 + cz^2 + dw^2 \equiv 0 \: (\text{mod. } p)$, where $p$ is an odd prime and $a \lnot \equiv 0$, $b \lnot \equiv 0$, $c \lnot \equiv 0$, $d \lnot \equiv 0 \: (\text{mod. } p)$. Rendiconti del Seminario Matematico della Università di Padova, Tome 18 (1949), pp. 311-315. http://geodesic.mathdoc.fr/item/RSMUP_1949__18__311_0/