Voir la notice de l'article provenant de la source Numdam
In this paper, we present a new mathematical programming formulation for the euclidean Steiner Tree Problem (ESTP) in . We relax the integrality constrains on this formulation and transform the resulting relaxation, which is convex, but not everywhere differentiable, into a standard convex programming problem in conic form. We consider then an efficient computation of an -optimal solution for this latter problem using interior-point algorithm.
@article{RO_2001__35_4_383_0, author = {Fampa, Marcia and Maculan, Nelson}, title = {A new relaxation in conic form for the euclidean {Steiner} problem in $\Re ^n$}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {383--394}, publisher = {EDP-Sciences}, volume = {35}, number = {4}, year = {2001}, mrnumber = {1896578}, zbl = {1020.90042}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RO_2001__35_4_383_0/} }
TY - JOUR AU - Fampa, Marcia AU - Maculan, Nelson TI - A new relaxation in conic form for the euclidean Steiner problem in $\Re ^n$ JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2001 SP - 383 EP - 394 VL - 35 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/RO_2001__35_4_383_0/ LA - en ID - RO_2001__35_4_383_0 ER -
%0 Journal Article %A Fampa, Marcia %A Maculan, Nelson %T A new relaxation in conic form for the euclidean Steiner problem in $\Re ^n$ %J RAIRO - Operations Research - Recherche Opérationnelle %D 2001 %P 383-394 %V 35 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/RO_2001__35_4_383_0/ %G en %F RO_2001__35_4_383_0
Fampa, Marcia; Maculan, Nelson. A new relaxation in conic form for the euclidean Steiner problem in $\Re ^n$. RAIRO - Operations Research - Recherche Opérationnelle, Tome 35 (2001) no. 4, pp. 383-394. http://geodesic.mathdoc.fr/item/RO_2001__35_4_383_0/