A new relaxation in conic form for the euclidean Steiner problem in n
RAIRO - Operations Research - Recherche Opérationnelle, Tome 35 (2001) no. 4, pp. 383-394

Voir la notice de l'article provenant de la source Numdam

In this paper, we present a new mathematical programming formulation for the euclidean Steiner Tree Problem (ESTP) in n . We relax the integrality constrains on this formulation and transform the resulting relaxation, which is convex, but not everywhere differentiable, into a standard convex programming problem in conic form. We consider then an efficient computation of an ϵ-optimal solution for this latter problem using interior-point algorithm.

Keywords: euclidean Steiner tree problem, conic form, interior point algorithms
@article{RO_2001__35_4_383_0,
     author = {Fampa, Marcia and Maculan, Nelson},
     title = {A new relaxation in conic form for the euclidean {Steiner} problem in $\Re ^n$},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {383--394},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {4},
     year = {2001},
     mrnumber = {1896578},
     zbl = {1020.90042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RO_2001__35_4_383_0/}
}
TY  - JOUR
AU  - Fampa, Marcia
AU  - Maculan, Nelson
TI  - A new relaxation in conic form for the euclidean Steiner problem in $\Re ^n$
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2001
SP  - 383
EP  - 394
VL  - 35
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/item/RO_2001__35_4_383_0/
LA  - en
ID  - RO_2001__35_4_383_0
ER  - 
%0 Journal Article
%A Fampa, Marcia
%A Maculan, Nelson
%T A new relaxation in conic form for the euclidean Steiner problem in $\Re ^n$
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2001
%P 383-394
%V 35
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/item/RO_2001__35_4_383_0/
%G en
%F RO_2001__35_4_383_0
Fampa, Marcia; Maculan, Nelson. A new relaxation in conic form for the euclidean Steiner problem in $\Re ^n$. RAIRO - Operations Research - Recherche Opérationnelle, Tome 35 (2001) no. 4, pp. 383-394. http://geodesic.mathdoc.fr/item/RO_2001__35_4_383_0/