The random linear bottleneck assignment problem
RAIRO - Operations Research - Recherche Opérationnelle, Tome 30 (1996) no. 2, pp. 127-142.

Voir la notice de l'article provenant de la source Numdam

@article{RO_1996__30_2_127_0,
     author = {Pferschy, U.},
     title = {The random linear bottleneck assignment problem},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {127--142},
     publisher = {EDP-Sciences},
     volume = {30},
     number = {2},
     year = {1996},
     mrnumber = {1424230},
     zbl = {0868.90083},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RO_1996__30_2_127_0/}
}
TY  - JOUR
AU  - Pferschy, U.
TI  - The random linear bottleneck assignment problem
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1996
SP  - 127
EP  - 142
VL  - 30
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/item/RO_1996__30_2_127_0/
LA  - en
ID  - RO_1996__30_2_127_0
ER  - 
%0 Journal Article
%A Pferschy, U.
%T The random linear bottleneck assignment problem
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1996
%P 127-142
%V 30
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/item/RO_1996__30_2_127_0/
%G en
%F RO_1996__30_2_127_0
Pferschy, U. The random linear bottleneck assignment problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 30 (1996) no. 2, pp. 127-142. http://geodesic.mathdoc.fr/item/RO_1996__30_2_127_0/

1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical functions, Dover Publications, New York, 1965.

2. B. Bollobás, Random Graphs, Academic Press, 1985. | Zbl | MR

3. B. Bollobás and A. Thomason, Random graphs of small order, Random Graphs'83, Annals of Discrete Math., 1985, 28, pp. 47-97. | Zbl | MR

4. R. E. Burkard and U. Derigs, Assignment and Matching Problems: Solution Methods with FORTRAN-Programs, Springer Lecture Notes in Economics and Mathematical Systems, 1980, 184. | Zbl | MR

5. U. Derigs, The shortest augmenting path method for solving assignment problems, Annals of Operations Research, 1985, 4, pp. 57-102. | MR

6. U. Derigs, Programming in networks and graphs, Springer Lectures Notes in Economics and Mathematical Systems, 1988, 300. | Zbl | MR

7. P. Erdös and A. Rényi, On random matrices, Publ. Math. Inst. Hungar. Acad. Sci., 1964, 8, pp. 455-461. | Zbl | MR

8. J. B. G. Frenk, M. Van Houweninge and A. H. G. Rinnooy Kan, Order statistics and the linear assignment problem, Report 8609/A, Econometric Institute, Erasmus University, Rotterdam, The Netherlands, 1986. | Zbl

9. H. N. Gabow and R. E. Tarjan, Algorithms for two bottleneck optimization problems, J. of Algorithms, 1988, 9, pp. 411-417. | Zbl | MR

10. J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matchings in bipartite graphs, SIAM J. Comput, 1973, 2, pp. 225-231. | Zbl | MR

11. R. M. Karp, An algorithm to solve the m x n assignment problem in expected time O (mn log n), Networks, 1980, 10, pp. 143-152. | Zbl | MR

12. R. M. Karp, An upper bound on the expected cost of an optimal assignment, Technical report, Computer Sc. Div., Univ. of California, Berkeley, 1984. | Zbl

13. S. Lang, Complex Analysis, Springer, 1985. | Zbl | MR

14. A. J. Lazarus, The assignment problem with uniform (0, 1) cost matrix, Master's thesis, Department of Mathematics, Princeton University, 1979.

15. B. Olin, Asymptotic properties of random assignment problems. PhD-thesis, Division of Optimization and Systems Theory, Department of Mathematics, Royal Institute of Technology, Stockholm, 1992. | MR

16. E. M. Palmer, Graphical Evolution, J. Wiley & Sons, 1985. | Zbl | MR

17. D. W. Walkup, On the expected value of a random assignment problem, SIAM J. Comput., 1979, 8, pp. 440-442. | Zbl | MR

18. D. W. Walkup, Matchings in random regular bipartite digraphs, Discrete Mathematics, 1980, 31, pp. 59-64. | Zbl | MR