Sur la dualité en optimisation vectorielle convexe
RAIRO - Operations Research - Recherche Opérationnelle, Tome 28 (1994) no. 3, pp. 255-281.

Voir la notice de l'article provenant de la source Numdam

@article{RO_1994__28_3_255_0,
     author = {Kouada, I.},
     title = {Sur la dualit\'e en optimisation vectorielle convexe},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {255--281},
     publisher = {EDP-Sciences},
     volume = {28},
     number = {3},
     year = {1994},
     mrnumber = {1290531},
     zbl = {0830.90123},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/item/RO_1994__28_3_255_0/}
}
TY  - JOUR
AU  - Kouada, I.
TI  - Sur la dualité en optimisation vectorielle convexe
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1994
SP  - 255
EP  - 281
VL  - 28
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/item/RO_1994__28_3_255_0/
LA  - fr
ID  - RO_1994__28_3_255_0
ER  - 
%0 Journal Article
%A Kouada, I.
%T Sur la dualité en optimisation vectorielle convexe
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1994
%P 255-281
%V 28
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/item/RO_1994__28_3_255_0/
%G fr
%F RO_1994__28_3_255_0
Kouada, I. Sur la dualité en optimisation vectorielle convexe. RAIRO - Operations Research - Recherche Opérationnelle, Tome 28 (1994) no. 3, pp. 255-281. http://geodesic.mathdoc.fr/item/RO_1994__28_3_255_0/

1. G. R. Bitran, Duality for Nonlinear Multiple Criteria Optimization Problems, Journal of Optimization Theory and Applications (JOTA), 35, 1981, p. 367-401 | Zbl | MR

2. S. Brumelle, Duality for Multiple Objective Convex Programs, Mathematics of Operations Research, 6, 1981, p. 159-172. | Zbl | MR

3. H. N. Corley, Duality for Maximization with Respect to Cones, Journal of Mathematical Analysis and Applications, 84, 1981, p. 560-568. | Zbl | MR

4. J. G. Ecker and I. A. Kouada, Finding Efficient Points for linear Multiple Objective Programs, Mathematical Programming, 8, 1975, p. 375-377. | Zbl | MR

5. A. M. Geoffrion, Proper Efficiency and the Theory of Vector Maximization, Journal of Mathematical Analysis and Applications, 22, 1968, p. 618-630. | Zbl | MR

6. R. Hartley, On Cone Efficiency, Cone Convexity and Cone Compactness, SIAM Journal on Applied Mathematics, 34, 1978, p. 211-222. | Zbl | MR

7. H. Isermann, On Some Relations Between a Dual Pair of Multiple Objective Programs, Zeitschrift Für Operations Research, 22, 1978, p. 33-41. | Zbl | MR

8. J. Jahn, Duality In Vector Optimization, Mathematical Programming, 25, 1983, p. 343-353. | Zbl | MR

9. I. A. Kouada, Sur la propriété de domination et l'existence de points Pareto-efficaces en optimisation vectorielle convexe, À paraître dans RAIRO-operations research. | Zbl | mathdoc-id | EuDML

10. H. W. Kuhn and A. W. Tucker, Nonlinear Programming Proceeding of the second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, California, 1950, p. 481-492. | Zbl | MR

11. D. T. Luc, About Duality and Alternative in Multiobjective Optimization, JOTA, 27, 1979, p. 509-529. | Zbl | MR

12. D. T. Luc, On Duality Theory in Multiobjective Programming, JOTA, 43, n° 4, août 1984. | Zbl | MR

13. O. L. Mangasarian, Nonlinear Programming, Mc Graw Hill Book Company, New York, 1969. | Zbl

14. H. Nakayama, Geometric Consideration in Vector optimization, JOTA, 44, n° 4, décembre 1984, p. 625-655. | Zbl | MR

15. J. W. Nieuwenhuis, About Isermann Duality, JOTA, 41, n° 1, 1980. | Zbl | MR

16. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1972. | Zbl | MR

17. T. Tanino and Y. Sawaragi, Duality Theory in Multiobjective Programming, JOTA, 27, 1979, p. 509-529. | Zbl | MR

18. P. L. Yu, Cone Convexity, Cone Extreme Points, and Nondominated Solutions in Decision Problems with Multiobjectives, JOTA, 14, n° 3, 1974. | Zbl | MR