Méthode du sous-gradient réduit généralisé comme extension du GRG d'Abadie au cas non différentiable
RAIRO - Operations Research - Recherche Opérationnelle, Tome 26 (1992) no. 3, pp. 237-267.

Voir la notice de l'article provenant de la source Numdam

@article{RO_1992__26_3_237_0,
     author = {El Ghali, A.},
     title = {M\'ethode du sous-gradient r\'eduit g\'en\'eralis\'e comme extension du {GRG} {d'Abadie} au cas non diff\'erentiable},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {237--267},
     publisher = {EDP-Sciences},
     volume = {26},
     number = {3},
     year = {1992},
     mrnumber = {1179623},
     zbl = {0772.90069},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/item/RO_1992__26_3_237_0/}
}
TY  - JOUR
AU  - El Ghali, A.
TI  - Méthode du sous-gradient réduit généralisé comme extension du GRG d'Abadie au cas non différentiable
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1992
SP  - 237
EP  - 267
VL  - 26
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/item/RO_1992__26_3_237_0/
LA  - fr
ID  - RO_1992__26_3_237_0
ER  - 
%0 Journal Article
%A El Ghali, A.
%T Méthode du sous-gradient réduit généralisé comme extension du GRG d'Abadie au cas non différentiable
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1992
%P 237-267
%V 26
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/item/RO_1992__26_3_237_0/
%G fr
%F RO_1992__26_3_237_0
El Ghali, A. Méthode du sous-gradient réduit généralisé comme extension du GRG d'Abadie au cas non différentiable. RAIRO - Operations Research - Recherche Opérationnelle, Tome 26 (1992) no. 3, pp. 237-267. http://geodesic.mathdoc.fr/item/RO_1992__26_3_237_0/

1. J. Abadie et J. Carpentier, Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints, In Optimization, R. FLETCHER ed., London Academic, 1969. | Zbl | MR

2. A. Bihain, V. H. Nguyen et J. J. Strodiot, A Reduced Subgradient Algorithm, Math. Programming Study, 1987, 30, pp. 127-149. | Zbl | MR

3. A. Bihain, Numerical and Algorithmic Contributions to the Constrained Optimization of Some Classes of Non-Differentiable Functions, Ph. D. Thesis, F.U.N.D.P., Namur, Belgium, 1984.

4. E. K. Blum, Numerical Analysis and Computation, Theory and Practice, Addison-Wesley, New York, 1972. | Zbl | MR

5. J. A. Chatelon, D. W. Hearn et J. J. Lowe, A Subgradient Algorithm for Certain Minimax and Minisum Problems, S.I.A.M., J. Control Optim., S.I.A.M., J. Control Optim., 1982,20, pp. 455-469. | Zbl | MR

6. M. Gaudioso et M. F. Monaco, A Bundle Type Approach to the Unconstrained Minimization of Convex Nonsmooth Functions, Math. Programming, 1982, 23, pp. 216-226. | Zbl | MR

7. W. Gochet et Y Smeers, A Modified Reduced Gradient Method for a Class of Nondifferentiable Problems, Math. Programming, 1980, 19, pp. 137-154. | Zbl | MR

8. P. Huard, Convergence of the Reduced Gradient Method, In Nonlinear Programming, O. L. MANGASARIAN, R. R. MEYER et S. M. ROBINSON, éd., Academic Press, New York, 1975, 2, pp. 29-54. | Zbl | MR

9. P. Huard, Un algorithme général de gradient réduit, Bulletin de la Direction des Études et Recherches, E.D.F., 1980, Série C, 2, pp. 91-109. | Zbl | MR

10. C. Lemaréchal et R. Mifflin, Nonsmooth optimization, Pergamon Press, New York, 1977. | Zbl | MR

11. C. Lemaréchal, Extensions diverses des méthodes de gradients et applications, Thèse d'État, Paris-IX Dauphine, Paris, 1980.

12. C. Lemaréchal, An Extension of Davidon Methods to Non-Differentiable Problems, Math. Programming Study, 1975, 3, pp. 95-109. | Zbl | MR

13. C. Lemaréchal, J. J. Strodiotet A. Bihain, On a Bundle Algorithm for Nonsmooth Optimization, In Nonlinear Programming, O. L. MANGASARIAN, R. R.MEYER et S. M. ROBINSON éd., Academic Press, New York, 1981, 4, pp. 245-282. | Zbl | MR

14. C. Lemaréchal A View of Line Search, In Lecture Notes in Control and Information Science A. AUSLENDER, W. OETTLLI et J. STOER, éd., Springer, Berlin, 1981. | Zbl | MR

15. D. G. Luenberger, Introduction to Linear and Nonlinear Programming, Academic Press, New York, 1973. | Zbl

16. R. Mifflin A Stable Method for Solving Certain Constrained Least Squares Problems, Math. Programming, 1979, 16, pp. 141-158. | Zbl | MR

17. R. Mifflin An Algorithm for Constrained Optimization with Semi Smooth Functions, Math. Oper. Res., 1977, 2, pp. 191-207. | Zbl | MR

18. R. Mifflin, Convergence of a Modification of Lemaréchal's Algorithm for non Smooth Optimization, In Progress in non differentiable Optimization, E. A.Nurminski ed., I.I.A.S.A., Laxenburg, Austria, 1982. | Zbl

19. H. Mokhtar-Kharroubi, Sur la convergence théorique de la méthode du gradient réduit généralisé, Numer. Math., 1980, 34, pp. 73-85. | Zbl | MR

20. H. Mokhtar-Kharroubi, Sur quelques méthodes de gradient réduit sous contraintes linéaires, R.A.I.R.O., Anal. Numér., 1979, 13, n° 2, pp. 167-180. | Zbl | MR | mathdoc-id

21. Y. Smeers, Generalized Reduced Gradient Method as an Extension of Feasible Directions Methods, J. Optim. Theory Appl., 1977, 22, n° 2, pp. 209-226. | Zbl | MR

22. J. J. Strodiot, V. H. Nguyen et N. Heukemes, ε-Optimal Solutions in non Differentiable Convex Programming and some Related Questions, Math. Programming, 1983, 25, pp. 307-328. | Zbl | MR

23. P. Wolfe, Reduced Gradient Method, Rand Document, June 1962.

24. P. Wolfe, On the Convergence of Gradient Methods under Constraints, I.B.M. Journal, 1972, pp. 407-411. | Zbl | MR

25. P. Wolfe, Convergence Conditions for Ascent Methods, S.I.A.M. Review, 1969,11, pp. 226-234. | Zbl | MR

26. P. Wolfe, A Method for Conjugate Subgradients for Minimizing non Differentiable Functions, Math. Programming Study, 1975, 3, pp. 145-173. | Zbl | MR

27. W. Zangwill, The Convex-Simplex Methods, Management Sci., 1967, 14, pp. 221-238. | Zbl | MR