Mots-clés : image classification
@article{RM_2024_79_6_a3,
author = {K. S. Lukyanov and P. A. Yaskov and A. I. Perminov and A. P. Kovalenko and D. Y. Turdakov},
title = {Extrapolation of the {Bayesian} classifier with an unknown support of the two-class mixture distribution},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {991--1015},
year = {2024},
volume = {79},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2024_79_6_a3/}
}
TY - JOUR AU - K. S. Lukyanov AU - P. A. Yaskov AU - A. I. Perminov AU - A. P. Kovalenko AU - D. Y. Turdakov TI - Extrapolation of the Bayesian classifier with an unknown support of the two-class mixture distribution JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2024 SP - 991 EP - 1015 VL - 79 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2024_79_6_a3/ LA - en ID - RM_2024_79_6_a3 ER -
%0 Journal Article %A K. S. Lukyanov %A P. A. Yaskov %A A. I. Perminov %A A. P. Kovalenko %A D. Y. Turdakov %T Extrapolation of the Bayesian classifier with an unknown support of the two-class mixture distribution %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2024 %P 991-1015 %V 79 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2024_79_6_a3/ %G en %F RM_2024_79_6_a3
K. S. Lukyanov; P. A. Yaskov; A. I. Perminov; A. P. Kovalenko; D. Y. Turdakov. Extrapolation of the Bayesian classifier with an unknown support of the two-class mixture distribution. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 6, pp. 991-1015. http://geodesic.mathdoc.fr/item/RM_2024_79_6_a3/
[1] A. Jishan and R. C. Green II, “Cost aware LSTM model for predicting hard disk drive failures based on extremely imbalanced S.M.A.R.T. sensors data”, Eng. Appl. Artif. Intell., 127 (2024), 107339, 11 pp. | DOI
[2] A. Caron, C. Hicks, and V. Mavroudis, A view on out-of-distribution identification from a statistical testing theory perspective, 2024, 8 pp., arXiv: 2405.03052
[3] Peng Cui and Jinjia Wang, “Out-of-distribution (OOD) detection based on deep learning: a review”, Electronics, 11:21 (2022), 3500, 19 pp. | DOI
[4] L. Devroye, L. Györfi, and G. Lugosi, A probabilistic theory of pattern recognition, Appl. Math. (N. Y.), 31, Reprint of the 1996 original, Springer-Verlag, New York, 2013, xvi+636 pp. | DOI | MR | Zbl
[5] S. M. Djurasevic, U. M. Pesovic, and B. S. Djordjevic, “Anomaly detection model for predicting hard disk drive failures”, Appl. Artif. Intell., 35:8 (2021), 549–566 | DOI
[6] A. Faragó and G. Lugosi, “Strong universal consistency of neural network classifiers”, IEEE Trans. Inform. Theory, 39:4 (1993), 1146–1151 | DOI | Zbl
[7] D. Hendrycks and K. Gimpel, A baseline for detecting misclassified and out-of-distribution examples in neural networks, 2016 (v1 – 2016), 12 pp., arXiv: 1610.02136
[8] J. Jithish, B. Alangot, N. Mahalingam, and Kiat Seng Yeo, “Distributed anomaly detection in smart grids: a federated learning-based approach”, IEEE Access, 11 (2023), 7157–7179 | DOI
[9] A. Klein, Backblaze: Hard drive data and stats https://www.backblaze.com/cloud-storage/resources/hard-drive-test-data
[10] Lingdong Kong, Shaoyuan Xie, Hanjiang Hu, Lai Xing Ng, B. Cottereau, and Wei Tsang Ooi, “Robodepth: Robust out-of-distribution depth estimation under corruptions”, Adv. Neural Inf. Process. Syst., 36 (2023), 1–45
[11] Bo Li, Peng Qi, Bo Liu, Shuai Di, Jingen Liu, Jiquan Pei, Jinfeng Yi, and Bowen Zhou, “Trustworthy AI: from principles to practices”, ACM Comput. Surveys, 55:9 (2023), 177, 46 pp. | DOI
[12] Jeremiah Zhe Liu, S. Padhy, Jie Ren, Zi Lin, Yeming Wen, G. Jerfel, Z. Nado, J. Snoek, D. Tran, and B. Lakshminarayanan, “A simple approach to improve single-model deep uncertainty via distance-awareness”, J. Mach. Learn. Res., 24 (2023), 42, 63 pp. | MR
[13] A. B. Nassif, M. Abu Talib, Q. Nasir, and F. M. Dakalbab, “Machine learning for anomaly detection: a systematic review”, IEEE Access, 9 (2021), 78658–78700 | DOI
[14] M. Perello-Nieto, T. D. M. E. S. Filho, M. Kull, and P. Flach, “Background check: a general technique to build more reliable and versatile classifiers”, 2016 IEEE 16th international conference on data mining (ICDM), IEEE, 2016, 1143–1148 | DOI
[15] R. Pinciroli, L. Yang, J. Alter, and E. Smirni, “Lifespan and failures of SSDs and HDDs: similarities, differences, and prediction models”, IEEE Trans. Depend. Secure Comput., 20:1 (2023), 256–272 | DOI
[16] K. Rasheed, A. Qayyum, M. Ghaly, A. Al-Fuqaha, A. Razi, and J. Qadir, “Explainable, trustworthy, and ethical machine learning for healthcare: a survey”, Comput. Biol. Med., 149 (2022), 106043, 23 pp. | DOI
[17] Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu, Zidi Xiong, R. Dutta, R. Schaeffer, Sang T. Truong, Simran Arora, M. Mazeika, D. Hendrycks, Zinan Lin, Yu Cheng, S. Koyejo, Dawn Song, and Bo Li, DecodingTrust: a comprehensive assessment of trustworthiness in GPT models, 2024 (v1 – 2023), 110 pp., arXiv: 2306.11698
[18] Qibo Yang, Xiaodong Jia, Xiang Li, Jianshe Feng, Wenzhe Li, and Jay Lee, “Evaluating feature selection and anomaly detection methods of hard drive failure prediction”, IEEE Trans. Reliab., 70:2 (2021), 749–760 | DOI
[19] Hang Yu, Weixu Liu, Jie Lu, Yimin Wen, Xiangfeng Luo, and Guangquan Zhang, “Detecting group concept drift from multiple data streams”, Pattern Recognition, 134 (2023), 109113, 11 pp. | DOI
[20] He Zhang, Bang Wu, Xingliang Yuan, Shirui Pan, Hanghang Tong, and Jian Pei, “Trustworthy graph neural networks: aspects, methods, and trends”, Proc. IEEE, 112:2 (2024), 97–139 | DOI
[21] Jing Zhang, Yuchao Dai, Mochu Xiang, Deng-Ping Fan, P. Moghadam, Mingyi He, C. Walder, Kaihao Zhang, M. Harandi, and N. Barnes, Dense uncertainty estimation, 2021, 15 pp., arXiv: 2110.06427
[22] Mingyu Zhang, Wenqiang Ge, Ruichun Tang, and Peishun Liu, “Hard disk failure prediction based on blending ensemble learning”, Appl. Sci., 13:5 (2023), 3288, 22 pp. | DOI
[23] Zhilin Zhao, Statistical methods for out-of-distribution detection, PhD thesis, Univ. Technology Sydney, 2023, 107 pp. | MR