On greedy approximation in complex Banach spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 6, pp. 975-990 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The general theory of greedy approximation with respect to arbitrary dictionaries is well developed in the case of real Banach spaces. Recently some results proved for the Weak Chebyshev Greedy Algorithm (WCGA) in the case of real Banach spaces were extended to the case of complex Banach spaces. In this paper we extend some of the results known in the real case for greedy algorithms other than the WCGA to the case of complex Banach spaces. Bibliography: 25 titles.
Keywords: complex Banach space, greedy approximation, weak greedy algorithm with free relaxation, greedy algorithm with weakness and relaxation
Mots-clés : incremental algorithm.
@article{RM_2024_79_6_a2,
     author = {A. V. Gasnikov and V. N. Temlyakov},
     title = {On greedy approximation in complex {Banach} spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {975--990},
     year = {2024},
     volume = {79},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2024_79_6_a2/}
}
TY  - JOUR
AU  - A. V. Gasnikov
AU  - V. N. Temlyakov
TI  - On greedy approximation in complex Banach spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 975
EP  - 990
VL  - 79
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2024_79_6_a2/
LA  - en
ID  - RM_2024_79_6_a2
ER  - 
%0 Journal Article
%A A. V. Gasnikov
%A V. N. Temlyakov
%T On greedy approximation in complex Banach spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 975-990
%V 79
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2024_79_6_a2/
%G en
%F RM_2024_79_6_a2
A. V. Gasnikov; V. N. Temlyakov. On greedy approximation in complex Banach spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 6, pp. 975-990. http://geodesic.mathdoc.fr/item/RM_2024_79_6_a2/

[1] A. R. Barron, “Universal approximation bounds for superposition of a sigmoidal functions”, IEEE Trans. Inform. Theory, 39:3 (1993), 930–945 | DOI | MR | Zbl

[2] A. R. Barron, A. Cohen, W. Dahmen, and R. DeVore, “Approximation and learning by greedy algorithms”, Ann. Statist., 36:1 (2008), 64–94 | DOI | MR | Zbl

[3] K. L. Clarkson, “Coresets, sparse greedy approximation, and the Frank–Wolfe algorithm”, ACM Trans. Algorithms, 6:4 (2010), 63, 30 pp. | DOI | MR | Zbl

[4] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive greedy approximations”, Constr. Approx., 13:1 (1997), 57–98 | DOI | MR | Zbl

[5] A. V. Dereventsov and V. N. Temlyakov, “A unified way of analyzing some greedy algorithms”, J. Funct. Anal., 277:12 (2019), 108286, 30 pp. | DOI | MR | Zbl

[6] A. Dereventsov and V. Temlyakov, “Biorthogonal greedy algorithms in convex optimization”, Appl. Comput. Harmon. Anal., 60 (2022), 489–511 | DOI | MR | Zbl

[7] R. A. DeVore and V. N. Temlyakov, “Some remarks on greedy algorithms”, Adv. Comput. Math., 5:2-3 (1996), 173–187 | DOI | MR | Zbl

[8] R. A. DeVore and V. N. Temlyakov, “Convex optimization on Banach spaces”, Found. Comput. Math., 16:2 (2016), 369–394 | DOI | MR | Zbl

[9] S. Dilworth, G. Garrigós, E. Hernández, D. Kutzarova, and V. Temlyakov, “Lebesgue-type inequalities in greedy approximation”, J. Funct. Anal., 280:5 (2021), 108885, 37 pp. | DOI | MR | Zbl

[10] M. J. Donahue, L. Gurvits, C. Darken, and E. Sontag, “Rate of convex approximation in non-Hilbert spaces”, Constr. Approx., 13:2 (1997), 187–220 | DOI | MR | Zbl

[11] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems”, IEEE J. Sel. Top. Signal Process., 1:4 (2007), 586–597 | DOI

[12] J. H. Friedman and W. Stuetzle, “Projection pursuit regression”, J. Amer. Statist. Assoc., 76:376 (1981), 817–823 | DOI | MR

[13] M. Ganichev and N. J. Kalton, “Convergence of the weak dual greedy algorithm in $L_p$-spaces”, J. Approx. Theory, 124:1 (2003), 89–95 | DOI | MR | Zbl

[14] Zheming Gao and G. Petrova, “Rescaled pure greedy algorithm for convex optimization”, Calcolo, 56:2 (2019), 15, 14 pp. | DOI | MR | Zbl

[15] P. J. Huber, “Projection pursuit”, Ann. Statist., 13:2 (1985), 435–475 | DOI | MR | Zbl

[16] M. Jaggi, “Revisiting Frank–Wolfe: projection-free sparse convex optimization”, Proceedings of the 30th international conference on machine learning, Proceedings of Machine Learning Research (PMLR), 28, no. 1, 2013, 427–435, https://proceedings.mlr.press/v28/jaggi13.html

[17] L. K. Jones, “On a conjecture of Huber concerning the convergence of projection pursuit regression”, Ann. Statist., 15:2 (1987), 880–882 | DOI | MR | Zbl

[18] L. K. Jones, “A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training”, Ann. Statist., 20:1 (1992), 608–613 | DOI | MR | Zbl

[19] S. Shalev-Shwartz, N. Srebro, and Tong Zhang, “Trading accuracy for sparsity in optimization problems with sparsity constraints”, SIAM J. Optim., 20:6 (2010), 2807–2832 | DOI | MR | Zbl

[20] V. N. Temlyakov, “Greedy algorithms in Banach spaces”, Adv. Comput. Math., 14:3 (2001), 277–292 | DOI | MR | Zbl

[21] V. N. Temlyakov, “Greedy-type approximation in Banach spaces and applications”, Constr. Approx., 21:2 (2005), 257–292 | DOI | MR | Zbl

[22] V. Temlyakov, Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011, xiv+418 pp. | DOI | MR | Zbl

[23] V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, xvi+534 pp. | DOI | MR | Zbl

[24] A. Tewari, P. K. Ravikumar, and I. S. Dhillon, “Greedy algorithms for structurally constrained high dimensional problems”, Adv. Neural Inf. Process. Syst., 24, NIPS 2011, MIT Press, Cambridge, MA, 2011, 882–890

[25] Tong Zhang, “Sequential greedy approximation for certain convex optimization problems”, IEEE Trans. Inform. Theory, 49:3 (2003), 682–691 | DOI | MR | Zbl