Mots-clés : incremental algorithm.
@article{RM_2024_79_6_a2,
author = {A. V. Gasnikov and V. N. Temlyakov},
title = {On greedy approximation in complex {Banach} spaces},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {975--990},
year = {2024},
volume = {79},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2024_79_6_a2/}
}
A. V. Gasnikov; V. N. Temlyakov. On greedy approximation in complex Banach spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 6, pp. 975-990. http://geodesic.mathdoc.fr/item/RM_2024_79_6_a2/
[1] A. R. Barron, “Universal approximation bounds for superposition of a sigmoidal functions”, IEEE Trans. Inform. Theory, 39:3 (1993), 930–945 | DOI | MR | Zbl
[2] A. R. Barron, A. Cohen, W. Dahmen, and R. DeVore, “Approximation and learning by greedy algorithms”, Ann. Statist., 36:1 (2008), 64–94 | DOI | MR | Zbl
[3] K. L. Clarkson, “Coresets, sparse greedy approximation, and the Frank–Wolfe algorithm”, ACM Trans. Algorithms, 6:4 (2010), 63, 30 pp. | DOI | MR | Zbl
[4] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive greedy approximations”, Constr. Approx., 13:1 (1997), 57–98 | DOI | MR | Zbl
[5] A. V. Dereventsov and V. N. Temlyakov, “A unified way of analyzing some greedy algorithms”, J. Funct. Anal., 277:12 (2019), 108286, 30 pp. | DOI | MR | Zbl
[6] A. Dereventsov and V. Temlyakov, “Biorthogonal greedy algorithms in convex optimization”, Appl. Comput. Harmon. Anal., 60 (2022), 489–511 | DOI | MR | Zbl
[7] R. A. DeVore and V. N. Temlyakov, “Some remarks on greedy algorithms”, Adv. Comput. Math., 5:2-3 (1996), 173–187 | DOI | MR | Zbl
[8] R. A. DeVore and V. N. Temlyakov, “Convex optimization on Banach spaces”, Found. Comput. Math., 16:2 (2016), 369–394 | DOI | MR | Zbl
[9] S. Dilworth, G. Garrigós, E. Hernández, D. Kutzarova, and V. Temlyakov, “Lebesgue-type inequalities in greedy approximation”, J. Funct. Anal., 280:5 (2021), 108885, 37 pp. | DOI | MR | Zbl
[10] M. J. Donahue, L. Gurvits, C. Darken, and E. Sontag, “Rate of convex approximation in non-Hilbert spaces”, Constr. Approx., 13:2 (1997), 187–220 | DOI | MR | Zbl
[11] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems”, IEEE J. Sel. Top. Signal Process., 1:4 (2007), 586–597 | DOI
[12] J. H. Friedman and W. Stuetzle, “Projection pursuit regression”, J. Amer. Statist. Assoc., 76:376 (1981), 817–823 | DOI | MR
[13] M. Ganichev and N. J. Kalton, “Convergence of the weak dual greedy algorithm in $L_p$-spaces”, J. Approx. Theory, 124:1 (2003), 89–95 | DOI | MR | Zbl
[14] Zheming Gao and G. Petrova, “Rescaled pure greedy algorithm for convex optimization”, Calcolo, 56:2 (2019), 15, 14 pp. | DOI | MR | Zbl
[15] P. J. Huber, “Projection pursuit”, Ann. Statist., 13:2 (1985), 435–475 | DOI | MR | Zbl
[16] M. Jaggi, “Revisiting Frank–Wolfe: projection-free sparse convex optimization”, Proceedings of the 30th international conference on machine learning, Proceedings of Machine Learning Research (PMLR), 28, no. 1, 2013, 427–435, https://proceedings.mlr.press/v28/jaggi13.html
[17] L. K. Jones, “On a conjecture of Huber concerning the convergence of projection pursuit regression”, Ann. Statist., 15:2 (1987), 880–882 | DOI | MR | Zbl
[18] L. K. Jones, “A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training”, Ann. Statist., 20:1 (1992), 608–613 | DOI | MR | Zbl
[19] S. Shalev-Shwartz, N. Srebro, and Tong Zhang, “Trading accuracy for sparsity in optimization problems with sparsity constraints”, SIAM J. Optim., 20:6 (2010), 2807–2832 | DOI | MR | Zbl
[20] V. N. Temlyakov, “Greedy algorithms in Banach spaces”, Adv. Comput. Math., 14:3 (2001), 277–292 | DOI | MR | Zbl
[21] V. N. Temlyakov, “Greedy-type approximation in Banach spaces and applications”, Constr. Approx., 21:2 (2005), 257–292 | DOI | MR | Zbl
[22] V. Temlyakov, Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011, xiv+418 pp. | DOI | MR | Zbl
[23] V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, xvi+534 pp. | DOI | MR | Zbl
[24] A. Tewari, P. K. Ravikumar, and I. S. Dhillon, “Greedy algorithms for structurally constrained high dimensional problems”, Adv. Neural Inf. Process. Syst., 24, NIPS 2011, MIT Press, Cambridge, MA, 2011, 882–890
[25] Tong Zhang, “Sequential greedy approximation for certain convex optimization problems”, IEEE Trans. Inform. Theory, 49:3 (2003), 682–691 | DOI | MR | Zbl