@article{RM_2024_79_6_a13,
author = {D. E. Apushkinskaya and A. A. Arkhipova and V. M. Babich and G. S. Weiss and I. A. Ibragimov and S. V. Kislyakov and N. V. Krylov and A. A. Laptev and A. I. Nazarov and G. A. Seregin and T. A. Suslina and H. Shahgholian},
title = {On the 90th birthday of {Nina} {Nikolaevna} {Uraltseva}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1119--1131},
year = {2024},
volume = {79},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2024_79_6_a13/}
}
TY - JOUR AU - D. E. Apushkinskaya AU - A. A. Arkhipova AU - V. M. Babich AU - G. S. Weiss AU - I. A. Ibragimov AU - S. V. Kislyakov AU - N. V. Krylov AU - A. A. Laptev AU - A. I. Nazarov AU - G. A. Seregin AU - T. A. Suslina AU - H. Shahgholian TI - On the 90th birthday of Nina Nikolaevna Uraltseva JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2024 SP - 1119 EP - 1131 VL - 79 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2024_79_6_a13/ LA - en ID - RM_2024_79_6_a13 ER -
%0 Journal Article %A D. E. Apushkinskaya %A A. A. Arkhipova %A V. M. Babich %A G. S. Weiss %A I. A. Ibragimov %A S. V. Kislyakov %A N. V. Krylov %A A. A. Laptev %A A. I. Nazarov %A G. A. Seregin %A T. A. Suslina %A H. Shahgholian %T On the 90th birthday of Nina Nikolaevna Uraltseva %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2024 %P 1119-1131 %V 79 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2024_79_6_a13/ %G en %F RM_2024_79_6_a13
D. E. Apushkinskaya; A. A. Arkhipova; V. M. Babich; G. S. Weiss; I. A. Ibragimov; S. V. Kislyakov; N. V. Krylov; A. A. Laptev; A. I. Nazarov; G. A. Seregin; T. A. Suslina; H. Shahgholian. On the 90th birthday of Nina Nikolaevna Uraltseva. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 6, pp. 1119-1131. http://geodesic.mathdoc.fr/item/RM_2024_79_6_a13/
[1] D. Apushkinskaya, A. Petrosyan, and H. Shahgholian, “Nina Nikolaevna Uraltseva”, Notices Amer. Math. Soc., 69:3 (2022), 385–395 | DOI | MR | Zbl
[2] N. N. Ural'tseva, “Regularity of solutions of multidimensional elliptic equations and variational problems”, Soviet Math. Dokl., 1 (1960), 161–164 | MR | Zbl
[3] N. N. Ural'tseva, “Boundary value problems for quasilinear elliptic equations and systems with divergent principal part”, Soviet Math. Dokl., 3 (1963), 1615–1618 | MR | Zbl
[4] N. N. Ural'tseva, “General quasilinear second-order equations and certain classes of systems of elliptic equations”, Soviet Math. Dokl., 3 (1963), 1399–1402 | MR | Zbl
[5] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. ; French transl. O. A. Ladyzhenskaya and N. N. Ural'tseva, Equations aux dérivées partielles de type elliptique, Monographies Universitaires de Mathématiques, 31, Dunod, Paris, 1968, xix+450 pp. | MR | Zbl | MR | Zbl
[6] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear equations of elliptic type, 2nd revised ed., Nauka, Moscow, 1973, 576 pp. (Russian) | MR | Zbl
[7] O. A. Ladyženskaya, V. A. Solonnikov, and N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968, xi+648 pp. | MR | Zbl
[8] A. I. Nazarov and N. N. Ural'tseva, “The Harnack inequality and related properties for solutions of elliptic and parabolic equations with divergence-free lower-order coefficients”, St. Petersburg Math. J., 23:1 (2012), 93–115 | DOI | MR | Zbl
[9] O. A. Ladyzhenskaya and N. N. Ural'tseva, “Estimate of the Hölder norm of the solutions of second-order quasilinear elliptic equations of the general form”, J. Soviet Math., 21:5 (1983), 762–768 | DOI | MR | Zbl
[10] O. A. Ladyzhenskaya and N. N. Ural'tseva, “Estimates of $\max|u_x|$ for the solutions of quasilinear elliptic and parabolic equations of the general form and existence theorems”, J. Soviet Math., 32 (1986), 486–499 | DOI | MR | Zbl
[11] O. A. Ladyzhenskaya and N. N. Ural'tseva, “A survey of results on the solubility of boundary-value problems for second-order uniformly elliptic and parabolic quasi-linear equations having unbounded singularities”, Russian Math. Surveys, 41:5 (1986), 1–31 | DOI | MR | Zbl
[12] N. N. Ural'tseva, “Estimates of derivatives of solutions of elliptic and parabolic inequalities”, Proceedings of the international congress of mathematicians (Berkeley, CA 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 1143–1149 | MR | Zbl
[13] N. N. Ural'tseva, “Degenerate quasilinear elliptic systems”, Semin. Math., 7, V. A. Steklov Math. Inst., Leningrad, 1968, 83–99 | MR | Zbl
[14] N. N. Ural'tseva and A. B. Urdaletova, “The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations”, Vestn. Leningr. Univ., Math., 16 (1984), 263–270 | MR | Zbl
[15] O. A. Ladyzhenskaya and N. N. Ural'tseva, “Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations”, Comm. Pure Appl. Math., 23:4 (1970), 677–703 | DOI | MR | Zbl
[16] N. N. Uraltseva, “On the non-uniformly quasilinear elliptic equations”, Actes du congrès international des mathématiciens (Nice 1970), v. 2, Gauthier-Villars Éditeur, Paris, 1971, 885–891 | MR | Zbl
[17] O. A. Ladyzhenskaya and N. N. Uraltseva, “Local gradient estimates for solutions of a simplest regularization of a class of nonuniformly elliptic equations”, J. Math. Sci. (N. Y.), 84:1 (1997), 862–872 | DOI | MR | Zbl
[18] N. N. Ural'tseva, “Solvability of the capillary problem”, Vestn. Leningr. Univ., Math., 6 (1979), 363–375 | MR | Zbl
[19] N. N. Ural'tseva, “Solvability of the capillary problem. II”, Vestn. Leningr. Univ., Math., 8 (1980), 151–158 | MR | Zbl
[20] V. I. Oliker and N. N. Ural'tseva, “Long time behavior of flows moving by mean curvature. II”, Topol. Methods Nonlinear Anal., 9:1 (1997), 17–28 | DOI | MR | Zbl
[21] N. N. Ural'tseva, “Strong solutions of the generalized Signorini problem”, Siberian Math. J., 19:5 (1978), 850–856 | DOI | MR | Zbl
[22] N. N. Ural'tseva, “Hölder continuity of the gradients of solutions of parabolic equations under boundary conditions of Signorini type”, Soviet Math. Dokl., 31 (1985), 135–138 | MR | Zbl
[23] A. A. Arkhipova and N. N. Ural'tseva, “Regularity of the solutions of diagonal elliptic systems under convex constraints on the boundary of the domain”, J. Soviet Math., 40:5 (1988), 591–598 | DOI | MR | Zbl
[24] A. A. Arkhipova and N. N. Ural'tseva, “Limit smoothness of the solutions of variational inequalities under convex constraints on the boundary of the domain”, J. Soviet Math., 49:5 (1990), 1121–1128 | DOI | MR | Zbl
[25] A. A. Arkhipova and N. N. Ural'tseva, “Regularity of the solution of a problem with a two-sided constraint on the boundary for elliptic and parabolic equations”, Proc. Steklov Inst. Math., 179 (1989), 1–19 | MR | Zbl
[26] A. A. Arkhipova and N. N. Uraltseva, “Existence of smooth solutions of problems for parabolic systems with convex constraints on the boundary of the domain”, J. Soviet Math., 56:2 (1991), 2281–2285 | DOI | MR | Zbl
[27] A. Arkhipova and N. Uraltseva, “Sharp estimates for solutions of a parabolic Signorini problem”, Math. Nachr., 177 (1996), 11–29 | DOI | MR | Zbl
[28] N. N. Ural'tseva, “Regularity of solutions of variational inequalities”, Russian Math. Surveys, 42:6 (1987), 191–219 | DOI | MR | Zbl
[29] D. E. Apushkinskaya and N. N. Uraltseva, “On the behavior of free boundaries near the boundary of the domain”, J. Math. Sci. (N. Y.), 87:2 (1997), 3267–3276 | DOI | MR | Zbl
[30] N. N. Ural'tseva, “$C^1$ regularity of the boundary of the noncoincident set in the obstacle problem”, St. Petersburg Math. J., 8:2 (1997), 341–353 | MR | Zbl
[31] N. N. Ural'tseva, “On some properties of the free boundary in a neighborhood of the points of contact with a given boundary”, J. Math. Sci. (N. Y.), 101:5 (2000), 3570–3576 | DOI | MR | Zbl
[32] N. N. Ural'tseva, “Contact of a free boundary with a fixed boundary”, Sb. Math., 191:2 (2000), 307–315 | DOI | MR | Zbl
[33] H. Shahgholian and N. Uraltseva, “Regularity properties of a free boundary near contact points with the fixed boundary”, Duke Math. J., 116:1 (2003), 1–34 | DOI | MR | Zbl
[34] D. E. Apushkinskaya, H. Shahgholian, and N. N. Ural'tseva, “Boundary estimates for solutions of the parabolic free boundary problem”, J. Math. Sci. (N. Y.), 115:6 (2003), 2720–2730 | DOI | MR | Zbl
[35] D. E. Apushkinskaya, N. Matevosyan, and N. N. Uraltseva, “The behavior of the free boundary close to a fixed boundary in a parabolic problem”, Indiana Univ. Math. J., 58:2 (2009), 583–604 | DOI | MR | Zbl
[36] H. Shahgholian, N. Uraltseva, and G. S. Weiss, “The two-phase membrane problem – regularity of the free boundaries in higher dimensions”, Int. Math. Res. Not. IMRN, 2007:8 (2007), rnm026, 16 pp. | DOI | MR | Zbl
[37] H. Shahgholian, N. Uraltseva, and G. S. Weiss, “A parabolic two-phase obstacle-like equation”, Adv. Math., 221:3 (2009), 861–881 | DOI | MR | Zbl
[38] N. N. Uraltseva, “Boundary estimates for solutions of elliptic and parabolic equations with discontinuous nonlinearities”, Nonlinear equations and spectral theory, Amer. Math. Soc. Transl. Ser. 2, 220, Adv. Math. Sci., 59, Amer. Math. Soc., Providence, RI, 2007, 235–246 | DOI | MR | Zbl
[39] D. E. Apushkinskaya and N. N. Uraltseva, “Uniform estimates near the initial state for solutions of the two-phase parabolic problem”, St. Petersburg Math. J., 25:2 (2014), 195–203 | DOI | MR | Zbl
[40] J. Andersson, H. Shahgholian, N. N. Uraltseva, and G. S. Weiss, “Equilibrium points of a singular cooperative system with free boundary”, Adv. Math., 280 (2015), 743–771 | DOI | MR | Zbl
[41] D. E. Apushkinskaya and N. N. Uraltseva, “On regularity properties of solutions to the hysteresis-type problem”, Interfaces Free Bound., 17:1 (2015), 93–115 | DOI | MR | Zbl
[42] D. E. Apushkinskaya and N. N. Uraltseva, “Free boundaries in problems with hysteresis”, Philos. Trans. Roy. Soc. A, 373:2050 (2015), 20140271, 10 pp. | DOI | MR | Zbl
[43] D. E. Apushkinskaya and N. N. Uraltseva, “Monotonicity formula for a problem with hysteresis”, Dokl. Math., 97:1 (2018), 49–51 | DOI | MR | Zbl
[44] A. Petrosyan, H. Shahgholian, and N. Uraltseva, Regularity of free boundaries in obstacle-type problems, Grad. Stud. Math., 136, Amer. Math. Soc., Providence, RI, 2012, x+221 pp. | DOI | MR | Zbl
[45] V. A. Solonnikov and N. N. Uraltseva, “Sobolev spaces”, Selected chapters in analysis and higher algebra, Publihing house of Leningrad State University, Leningrad, 1981, 129–199 (Russian)
[46] D. E. Apushkinskaya, A. A. Arkhipova, A. I. Nazarov, V. G. Osmolovskii, and N. N. Uraltseva, “A survey of results of St. Petersburg State University research school on nonlinear partial differential equations. I”, Vestnik St. Petersburg Univ. Math., 57:1 (2024), 1–22 | DOI | MR
[47] D. E. Apushkinskaya and A. I. Nazarov, “V. I. Smirnov Seminar is 75!”, Boundary value problems of mathematical physics and related questions in function theory. 50, Zap. Nauchn. Semin. Sankt-Peterburg. Otdel. Mat. Inst. Steklov, 519, St Petersburg Department of the Steklov mathematical Institute, St Petersburg, 2022, 5–9 (Russian) | MR