On the 90th anniversary of the birth of Vladimir Nikolaevich Sudakov (1934–2016)
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 6, pp. 1111-1118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2024_79_6_a12,
     author = {S. G. Bobkov and V. I. Bogachev and D. N. Zaporozhets and I. A. Ibragimov},
     title = {On the 90th anniversary of the birth of {Vladimir} {Nikolaevich} {Sudakov} (1934{\textendash}2016)},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1111--1118},
     year = {2024},
     volume = {79},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2024_79_6_a12/}
}
TY  - JOUR
AU  - S. G. Bobkov
AU  - V. I. Bogachev
AU  - D. N. Zaporozhets
AU  - I. A. Ibragimov
TI  - On the 90th anniversary of the birth of Vladimir Nikolaevich Sudakov (1934–2016)
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 1111
EP  - 1118
VL  - 79
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2024_79_6_a12/
LA  - en
ID  - RM_2024_79_6_a12
ER  - 
%0 Journal Article
%A S. G. Bobkov
%A V. I. Bogachev
%A D. N. Zaporozhets
%A I. A. Ibragimov
%T On the 90th anniversary of the birth of Vladimir Nikolaevich Sudakov (1934–2016)
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 1111-1118
%V 79
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2024_79_6_a12/
%G en
%F RM_2024_79_6_a12
S. G. Bobkov; V. I. Bogachev; D. N. Zaporozhets; I. A. Ibragimov. On the 90th anniversary of the birth of Vladimir Nikolaevich Sudakov (1934–2016). Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 6, pp. 1111-1118. http://geodesic.mathdoc.fr/item/RM_2024_79_6_a12/

[1] R. J. Adler, An introduction to continuity, extrema, and related topics for general Gaussian processes, IMS Lecture Notes Monogr. Ser., 12, Inst. Math. Statist., Hayward, CA, 1990, x+160 pp. | MR | Zbl

[2] L. Ambrosio, B. Kirchheim, and A. Pratelli, “Existence of optimal transport maps for crystalline norms”, Duke Math. J., 125:2 (2004), 207–241 | DOI | MR | Zbl

[3] L. Ambrosio and A. Pratelli, “Existence and stability results in the $L^1$ theory of optimal transportation”, Optimal transportation and applications (Martina Franca 2001), Lecture Notes in Math., 1813, Springer-Verlag, Berlin, 2003, 123–160 | DOI | MR | Zbl

[4] M. Bardelloni and S. Bianchini, “The decomposition of optimal transportation problems with convex cost”, Bull. Inst. Math. Acad. Sin. (N. S.), 11:2 (2016), 401–484 | MR | Zbl

[5] S. Bianchini and S. Daneri, On Sudakov's type decomposition of transference plans with norm costs, Mem. Amer. Math. Soc., 251, no. 1197, Amer. Math. Soc., Providence, RI, 2018, vi+112 pp. | DOI | MR | Zbl

[6] S. Bobkov, G. Chistyakov, and F. Götze, Concentration and Gaussian approximation for randomized sums, Probab. Theory Stoch. Model., 104, Springer, Cham, 2023, xvii+434 pp. | DOI | MR | Zbl

[7] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998, xii+433 pp. | DOI | MR | Zbl

[8] L. A. Caffarelli, M. Feldman, and R. J. McCann, “Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs”, J. Amer. Math. Soc., 15:1 (2002), 1–26 | DOI | MR | Zbl

[9] L. Caravenna, “A proof of Sudakov theorem with strictly convex norms”, Math. Z., 268:1-2 (2011), 371–407 | DOI | MR | Zbl

[10] G. Carlier, L. De Pascale, and F. Santambrogio, “A strategy for non-strictly convex transport costs and the example of $\|X-Y\|^P$ in $\mathbb{R}^2$”, Commun. Math. Sci., 8:4 (2010), 931–941 | DOI | MR | Zbl

[11] T. Champion and L. De Pascale, “The Monge problem for strictly convex norms in $\mathbb{R}^d$”, J. Eur. Math. Soc. (JEMS), 12:6 (2010), 1355–1369 | DOI | MR | Zbl

[12] T. Champion and L. De Pascale, “The Monge problem in $\mathbb{R}^d$”, Duke Math. J., 157:3 (2011), 551–572 | DOI | MR | Zbl

[13] B. S. Cirel'son (Tsirelson), I. A. Ibragimov, and V. N. Sudakov, “Norms of Gaussian sample functions”, Proceedings of the third Japan–USSR symposium on probability theory (Tashkent 1975), Lecture Notes in Math., 550, Springer-Verlag, Berlin–New York, 1976, 20–41 | MR | Zbl

[14] R. M. Dudley, “V. N. Sudakov's work on expected suprema of Gaussian processes”, High dimensional probability VII, Progr. Probab., 71, Springer, Cham, 2016, 37–43 | DOI | MR | Zbl

[15] L. C. Evans and W. Gangbo, Differential equations methods for the Monge–Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137, no. 653, Amer. Math. Soc., Providence, RI, 1999, viii+66 pp. | DOI | MR | Zbl

[16] X. Fernique, Fonctions aléatoires gaussiennes, vecteurs aléatoires gaussiens, Univ. Montréal, Centre de Recherches Mathématiques, Montreal, 1997, iv+217 pp. | MR | Zbl

[17] M. Ledoux and M. Talagrand, Probability in Banach spaces. Isoperimetry and processes, Ergeb. Math. Grenzgeb. (3), 23, Springer-Verlag, Berlin, 1991, xii+480 pp. | DOI | MR | Zbl

[18] M. A. Lifshits, Gaussian random functions, Math. Appl., 322, Kluwer Acad. Publ., Dordrecht, 1995, xii+333 pp. | DOI | MR | Zbl

[19] A. Pelczyński and V. N. Sudakov, “Remark on non-complemented subspaces of the space $m(S)$”, Colloq. Math., 9 (1962), 85–88 | DOI | MR | Zbl

[20] J. V. Romanovskiĭ and V. N. Sudakov, “On the existence of independent partition”, Proc. Steklov Inst. Math., 79 (1965), 1–7 | MR | Zbl

[21] V. N. Sudakov, “Criteria of compactness in function spaces”, Uspekhi Mat. Nauk, 12:3(75) (1957), 221–224 (Russian) | MR | Zbl

[22] V. N. Sudakov, “Linear sets with a quasi-invariant measure”, Dokl. Akad. Nauk SSSR, 127:3 (1959), 524–525 (Russian) | MR | Zbl

[23] V. N. Sudakov, “Extension of measures from Baire sets in non-separable linear metric spaces”, Sibirsk. Mat. Zh., 2:6 (1961), 946–948 (Russian) | MR | Zbl

[24] V. N. Sudakov, Some problems related to distributions in infinite-dimensional linear spaces, Summary of Ph.D. thesis, Leningrad State UNiversity, Leningrad, 1962, 6 pp. (Russian)

[25] V. N. Sudakov, “On the characterization of the quasi-invariance of measures in Hilbert space”, Uspekhi Mat. Nauk, 18:1(109) (1963), 188–190 (Russian) | MR | Zbl

[26] V. N. Sudakov, “A class of compact sets in a Hilbert space”, Uspekhi Mat. Nauk, 18:1(109) (1963), 181–187 (Russian) | MR | Zbl

[27] V. N. Sudakov, “Connections between the theorem on expansion in generalized eigenelements and the theorem on the extension of a weak distribution to a measure in Hilbert space”, International Congress of Mathematicians. Short communications, Sect. 5 (Moscow 1966), ICM, Moscow, 1966, 75 (Russian)

[28] V. N. Sudakov, “General measure theory in linear spaces and realizations of Gaussian processes”, Proceedings of the Sixth Mathematical School on Probability Theory and mathematical Statistics, Katsiveli, 1969, 211–227 (Russian) | Zbl

[29] V. N. Sudakov, “Gaussian measures, Cauchy measures and $\varepsilon$-entropy”, Soviet Math. Dokl., 10 (1969), 310–313 | MR | Zbl

[30] V. N. Sudakov, “On independent complementation to two partitions in the case when there exists a bounded density”, Proc. Steklov Inst. Math., 111 (1970), 1–10 | MR | Zbl

[31] V. N. Sudakov, “Gaussian random processes and measures of solid angles in Hilbert space”, Soviet Math. Dokl., 12 (1971), 412–415 | MR | Zbl

[32] V. N. Sudakov, “On a problem of Birkhoff”, Soviet Math. Dokl., 12 (1971), 362–365 | MR | Zbl

[33] V. N. Sudakov, Geometric problems in the theory of infinite-dimensional probability distributions, D.Sc. thesis, Leningrad, 1972, 300 pp. (Russian)

[34] V. N. Sudakov, Geometric problems in the theory of infinite-dimensional probability distributions, Summary of D.Sc. thesis, Leningrad State University, Leningrad, 1973, 23 pp. (Russian)

[35] V. N. Sudakov, “A remark on the criterion of continuity of Gaussian sample function”, Proceedings of the second Japan–USSR symposium on probability theory (Kyoto 1972), Lecture Notes in Math., 330, Springer-Verlag, Berlin–New York, 1973, 444–454 | DOI | MR | Zbl

[36] V. N. Sudakov and B. S. Cirel'son (Tsirelson), “Extremal properties of half-spaces for spherically invariant measures”, J. Soviet Math., 9 (1978), 9–18 | DOI | MR | Zbl

[37] V. N. Sudakov, “Geometric problems in the theory of infinite-dimensional probability distributions”, Proc. Steklov Inst. Math., 141 (1979), 1–178 | MR | Zbl

[38] V. N. Sudakov, “Typical distributions of linear functionals in finite-dimensional spaces of higher dimension”, Soviet Math. Dokl., 19 (1978), 1578–1582 | MR | Zbl

[39] V. N. Sudakov, “The Weizsäcker phenomenon and a canonical definition of Gaussian Lebesgue–Rokhlin measures”, J. Math. Sci. (N. Y.), 163:4 (2010), 430–445 | DOI | MR | Zbl

[40] M. Talagrand, Upper and lower bounds for stochastic processes. Decomposition theorems, Ergeb. Math. Grenzgeb. (3), 2nd ed., Springer, Cham, 2021, xviii+726 pp. | DOI | MR | Zbl

[41] N. S. Trudinger and Xu-Jia Wang, “On the Monge mass transfer problem”, Calc. Var. Partial Differential Equations, 13:1 (2001), 19–31 | DOI | MR | Zbl

[42] N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan, Probability distributions on Banach spaces, Math. Appl. (Soviet Ser.), 14, D. Reidel Publishing Co., Dordrecht, 1987, xxvi+482 pp. | DOI | MR | Zbl

[43] A. M. Vershik and V. N. Sudakov, “Probability measures in infinite-dimensional spaces”, Semin. Math., 12, V. A. Steklov Math. Inst., Leningrad, 1969, 1–28 | MR | Zbl

[44] H. V. Weizsäcker, “A few recollections”, J. Math. Sci. (N. Y.), 238:4 (2019), 346–347 | DOI | MR